• Login
    Search 
    •   Home
    • Academic Divisions
    • Biological and Environmental Sciences & Engineering (BESE)
    • Environmental Science and Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Biological and Environmental Sciences & Engineering (BESE)
    • Environmental Science and Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    Author
    Van Der Merwe, Riaan (1)
    DepartmentBiological and Environmental Sciences and Engineering (BESE) Division (1)SubjectConcentrate Discharge (1)Desalination (1)Environmetal Management (1)Impact Assessment (1)Marine Monitoring (1)View MoreThesis/Dissertation Advisor
    Amy, Gary L. (1)
    Thesis/Dissertation ProgramEnvironmental Science and Engineering (1)TypeDissertation (1)Year (Issue Date)
    2014 (1)
    Item AvailabilityOpen Access (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    In-situ marine monitoring and environmental management of SWRO concentrate discharge: A case study of the KAUST SWRO plant

    Van Der Merwe, Riaan (2014-06) [Dissertation]
    Advisor: Amy, Gary L.
    Committee members: Bleninger, Tobias; Lattemann, Sabine; McCabe, Matthew; Stingl, Ulrich
    Concentrate (when discharged to the ocean) may have chronic/acute impacts on marine ecosystems, particularly in the mixing zone around outfalls. The environmental impact of the desalination plant discharges is very site- and volumetric specific, and depends to a great extent on the salinity tolerance of the specific marine microbial communities as well as higher order organisms inhabiting the water column in and around this extreme discharge environment. Scientific studies that aim to grant insight into possible impacts of concentrate discharge are very important, in order to understand how this may affect different marine species when exposed to elevated salinity levels or residual chemicals from the treatment process in the discharge site. The objective of this PhD research was to investigate the potential environmental effects of the concentrate discharge in the near-field area around the submerged discharge of the King Abdullah University of Science and Technology (KAUST) seawater reverse osmosis (SWRO) plant by a combination of biological and hydrological studies. Possible changes in microbial abundance were assessed by using flow cytometric (FCM) analysis on a single-cell level in 107 samples, taken from the discharge area, the feed-water intake area and two control sites. Results indicate that changes in microbial abundance in the near-field area of the KAUST SWRO outfall are minor and appear to bethe result of a dilution effect rather than a direct impact of the concentrate discharge. In order to also investigate potential impacts on higher order organisms, a longterm in-situ salinity tolerance test at the discharge site was conducted on the coral Fungia granulosa and its photophysiology. The corals were exposed to elevated levels of salinity as a direct result of concentrate discharge. Their photosynthetic response after exposure to extreme salinity conditions around the full-scale operating SWRO desalination discharge was measured. A pulse amplitude modulated (PAM) fluorometer was used to assess photochemical energy conversion in photosystem II (PSII) measured under constant concentrate discharge conditions. Based on a literature review, we anticipated distinct impairment of photosynthetic characteristics as a response to elevated salinity levels. We also expected particularly quick indications of bleaching for the specimens exposed to the highest salinity levels. The hypothesis was strongly rejected as symbiotic dinoflagellates of Fungia granulosa demonstrated high tolerance to hyper saline stress as measured by effective quantum yield of PSII (ΔF/Fm’) during this study. A series of propulsion driven autonomous underwater vehicle (AUV) missions with velocity and salinity measurements were used for possible plume detection and evaluation of the discharge. The Cornell Mixing Zone Expert System (CORMIX) was additionally utilized in order to assess discharge performance under different ambient velocity magnitudes. Results show that AUV missions could provide significant insight with regards to plume identification and effluent discharge environmental impact studies. Combined with robust in-situ field measurements, models and expert systems were used to evaluate possible impacts on the marine environment in comparison with regulatory mixing zones and dilution criteria. Based on the findings and existing environmental governance (national and international), a revised regulatory framework for mixing zones within the Kingdom of Saudi Arabia is recommended.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.