• Login
    Search 
    •   Home
    • Academic Divisions
    • Biological and Environmental Sciences & Engineering (BESE)
    • Environmental Science and Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Biological and Environmental Sciences & Engineering (BESE)
    • Environmental Science and Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorAlsaadi, Ahmad Salem (2)Amy, Gary L. (2)
    Francis, Lijo (2)
    Ghaffour, NorEddine (2)
    Maab, Husnul (2)View MoreDepartment
    Biological and Environmental Sciences and Engineering (BESE) Division (2)
    Environmental Science and Engineering Program (2)Nanostructured Polymeric Membrane Lab (2)Water Desalination and Reuse Research Center (WDRC) (2)Physical Sciences and Engineering (PSE) Division (1)JournalDesalination and Water Treatment (1)Journal of Membrane Science (1)PublisherElsevier BV (1)Informa UK Limited (1)Subject
    Membrane distillation (2)
    Electrospinning (1)Membranes (1)Nanofibers (1)Polyoxadiazole (1)View MoreTypeArticle (2)Year (Issue Date)2013 (1)2012 (1)Item AvailabilityMetadata Only (1)Open Access (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-2 of 2

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 2CSV
    • 2RefMan
    • 2EndNote
    • 2BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Fabrication of electrospun nanofibrous membranes for membrane distillation application

    Francis, Lijo; Maab, Husnul; Alsaadi, Ahmad Salem; Nunes, Suzana Pereira; Ghaffour, NorEddine; Amy, Gary L. (Desalination and Water Treatment, Informa UK Limited, 2013-02) [Article]
    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.
    Thumbnail

    Synthesis and fabrication of nanostructured hydrophobic polyazole membranes for low-energy water recovery

    Maab, Husnul; Francis, Lijo; Alsaadi, Ahmad Salem; Aubry, Cyril; Ghaffour, NorEddine; Amy, Gary L.; Nunes, Suzana Pereira (Journal of Membrane Science, Elsevier BV, 2012-12) [Article]
    Aromatic fluorinated polyoxadiazoles (F-POD) and polytriazoles (F-PT) were synthesized and for the first time manufactured into porous membranes by phase inversion and by electrospinning. The phase inversion F-POD membranes had a mean flow pore size (MFP) of 51nm, while for F-PT it was around 74nm. The electrospun membranes had a much larger pore size, the MFP for F-POD membrane was around 1.7μm and for F-PT it was 2.7μm. The membranes were tested for desalination of Red Sea water using direct contact membrane distillation (DCMD). By combining the high polymer hydrophobicity and high porosity, apparent contact angles up to 162° were obtained, assuring the operation with practically no liquid water leakage under pressure up to 0.9bar. Salt selectivity as high as 99.95% and water fluxes as high as 85Lm -2h -1 were demonstrated, operating at 80°C feed temperature and 22°C permeate. © 2012 Elsevier B.V.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.