• Login
    Search 
    •   Home
    • Academic Divisions
    • Biological and Environmental Sciences & Engineering (BESE)
    • Environmental Science and Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Biological and Environmental Sciences & Engineering (BESE)
    • Environmental Science and Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorAli, Syed Muztuza (1)Ghaffour, NorEddine (1)Kerdi, Sarah (1)Phuntsho, S. (1)Qamar, Adnan (1)View MoreDepartmentBiological and Environmental Sciences and Engineering (BESE) Division (1)Environmental Science and Engineering Program (1)Water Desalination and Reuse Research Center (WDRC) (1)JournalWater Research (1)KAUST Acknowledged Support UnitCompetitive Research (1)KAUST Supercomputing Laboratory (KSL) (1)KAUST Grant NumberCRG2017 (1)
    URF/1/3404-01 (1)
    PublisherElsevier BV (1)Subject3D printing (1)CFD (1)Feed spacer (1)
    Fouling (1)
    Pressure drop (1)View MoreTypeArticle (1)Year (Issue Date)2019 (1)Item Availability
    Embargoed (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Energy efficient 3D printed column type feed spacer for membrane filtration

    Ali, Syed Muztuza; Qamar, Adnan; Kerdi, Sarah; Phuntsho, S.; Vrouwenvelder, Johannes S.; Ghaffour, NorEddine; Shon, H.K. (Water Research, Elsevier BV, 2019-08-06) [Article]
    Modification of the feed spacer design significantly influences the energy consumption of membrane filtration processes. This study developed a novel column type feed spacer with the aim to reduce the specific energy consumption (SEC) of the membrane based water filtration system. The proposed spacer increases the clearance between the filament and the membrane (reducing the spacer filament diameter) while keeping the same flow channel thickness as compared to a standard non-woven symmetric spacer. Since the higher clearance reduces the flow unsteadiness, column type nodes were added in the spacer structure as additional vortex shading bodies. Fluid flow behaviour in the channel for this spacer was numerically simulated by 3D CFD studies and then compared with the standard spacer. The numerical results showed that the proposed spacer substantially reduced the pressure drop, shear stress at the constriction region and shortened the dead zone. Finally, these findings were confirmed experimentally by investigating the filtration performances using the 3D printed prototypes of these spacers in a lab-scale filtration module. It is observed that the column spacer reduced the pressure drop by three times and doubled the specific water flux. 2D OCT (Optical Coherence Tomography) scans of the membrane surface acquired after the filtration revealed much lower biomass accumulation using the proposed spacer. Consequently, the SEC for the column spacer was found about two folds lower than the standard spacer.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.