• Login
    Search 
    •   Home
    • Academic Divisions
    • Biological and Environmental Sciences & Engineering (BESE)
    • Environmental Science and Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Biological and Environmental Sciences & Engineering (BESE)
    • Environmental Science and Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorLogan, Bruce E. (1)Myung, Jaewook (1)Saikaly, Pascal (1)DepartmentBiological and Environmental Sciences and Engineering (BESE) Division (1)
    Environmental Science and Engineering Program (1)
    Water Desalination and Reuse Research Center (WDRC) (1)JournalChemical Engineering Journal (1)PublisherElsevier BV (1)Subject
    Acetogens (1)
    Bioelectricity (1)Methane (1)Methanol (1)Methanotrophs (1)View MoreTypeArticle (1)Year (Issue Date)2018 (1)Item Availability
    Embargoed (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    A two-staged system to generate electricity in microbial fuel cells using methane

    Myung, Jaewook; Saikaly, Pascal; Logan, Bruce E. (Chemical Engineering Journal, Elsevier BV, 2018-07-04) [Article]
    Methane is an abundant and inexpensive feedstock that is available as natural gas and renewable biogas. However, methane has not been regarded as a good substrate for microbial fuel cells (MFCs) due to low power densities. To increase power, a two-step strategy was used based on conversion of methane into methanol, followed by electricity generation using methanol as the substrate in the MFC. To produce methanol, a methane-oxidizing culture was grown in a high phosphate buffer resulting in the accumulation of 350 ± 42 mg/L of methanol. The methanol-fed MFC produced a maximum power density of 426 ± 17 mW/m. It was also shown that the methanol-rich medium produced from the first step can directly be supplied to the MFCs, removing the need for purification of methanol. Analysis of the microbial community suggests that acetogens first converts methanol into acetate, which is then consumed by exoelectrogens for power generation.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.