• Login
    Search 
    •   Home
    • Academic Divisions
    • Biological and Environmental Sciences & Engineering (BESE)
    • Environmental Science and Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Biological and Environmental Sciences & Engineering (BESE)
    • Environmental Science and Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorAbuHannoud, Ali (1)Ahmed, Elaf A. (1)Aljassim, Nada I. (1)Allen, Rebecca (1)AlMashharawi, Samer (1)View MoreDepartmentBiological and Environmental Sciences and Engineering (BESE) Division (58)Environmental Science and Engineering Program (7)SubjectBiofouling (3)Desalination (3)Hydraulic Conductivity (3)Adsorption (2)Biofilm (2)View MoreThesis/Dissertation AdvisorAmy, Gary L. (14)Leiknes, TorOve (7)Croue, Jean-Philippe (6)Missimer, Thomas M. (6)Saikaly, Pascal E. (6)View MoreThesis/Dissertation ProgramEnvironmental Science and Engineering (58)Type
    Thesis (58)
    Year (Issue Date)2018 (1)2017 (6)2016 (7)2015 (4)2014 (7)View MoreItem Availability
    Open Access (58)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-10 of 58

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 50CSV
    • 50RefMan
    • 50EndNote
    • 50BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Ultrafiltration Membrane Fouling and the Effect of Ion Exchange Resins

    Jamaly, Sanaa (2011-12) [Thesis]
    Advisor: Croue, Jean-Philippe
    Committee members: Amy, Gary L.; Zhang, Tao
    Membrane fouling is a challenging process for the ultrafiltration membrane during wastewater treatment. This research paper determines the organic character of foulants of different kinds of wastewater before and after adding some ion exchange resins. Two advanced organic characterization methods are compared in terms of concentration of dissolved organic carbons: The liquid chromatography with organic carbon (LC-OCD) and Shimadzu total organic carbon (TOC). In this study, two secondary wastewater effluents were treated using ultrafiltration membrane. To reduce fouling, pretreatment using some adsorbents were used in the study. Six ion exchange resins out of twenty were chosen to compare the effect of adsorbents on fouling membrane. Based on the percent of dissolved organic carbon’s removal, three adsorbents were determined to be the most efficient (DOWEX Marathon 11 anion exchange resin, DOWEX Optipore SD2 polymeric adsorbent, and DOWEX PSR2 anion exchange), and three other ones were determined to the least efficient (DOWEX Marathon A2 anion exchange resin, DOWEX SAR anion exchange resin, and DOWEX Optipore L493 polymeric adsorbent). Organic characterization for feed, permeate, and backwash samples were tested using LC-OCD and TOC to better understand the characteristics of foulants to prevent ultrafiltration membrane fouling. The results suggested that the polymeric ion exchange resin, DOWEX SD2, reduced fouling potential for both treated wastewaters. All the six ion exchange resins removed more humic fraction than other organic fractions in different percent, so this fraction is not the main for cause for UF membrane fouling. The fouling of colloids was tested before and after adding calcium. There is a severe fouling after adding Ca2+ to effluent colloids.
    Thumbnail

    Analysis of Exoelectrogenic Bacterial Communities Present in Different Brine Pools of the Red Sea

    Ortiz Medina, Juan F. (2014-05) [Thesis]
    Advisor: Saikaly, Pascal E.
    Committee members: Amy, Gary L.; Stingl, Ulrich
    One contemporary issue experienced worldwide is the climate change due to the combustion of fossil fuels. Microbial Electrochemical Systems pose as an alternative for energy generation. In this technology, microorganisms are primarily responsible for electricity production. To improve the performance it is reasonable to think that bacteria from diverse environments, such as the brine pools of the Red Sea, can be utilized in these systems. Samples from three brine pools: Atlantis II, Valdivia, and Kebrit Deeps, were analyzed using Microbial Electrochemical Cells, with a poised potential at +0.2 V (vs. Ag/AgCl) and acetate as electron donor, to evaluate the exoelectrogenic activity by the present microorganisms. Only samples from Valdivia Deep were able to produce a noticeable current of 6 A/m2. This result, along with acetate consumption and changes on the redox activity measured with cyclic voltammetry, provides arguments to con rm the presence of exoelectrogenic bacteria in this environment. Further characterization using microscopy and molecular biology techniques is required, to obtain the most amount of information about these microorganisms and their potential use in bioelectrochemical technologies.
    Thumbnail

    Advanced Monitoring and Characterization of Biofouling in Gravity-driven Membrane Filtration

    Wang, Yiran (2016-05) [Thesis]
    Advisor: Leiknes, TorOve
    Committee members: Saikaly, Pascal; Wei, Chun-Hai
    Gravity-driven membrane (GDM) filtration is one of the promising membrane bioreactor (MBR) technologies. It operates at a low pressure by gravity, requiring a minimal energy. Thus, it exhibits a great potential for a decentralized system, conducting household in developing and transition countries. Biofouling is a universal problem in almost all membrane filtration applications, leading to the decrease in flux or the increase in transmembrane pressure depending on different operation mode. Air scoring or regular membrane cleaning has been utilized for fouling mitigation, which requires increased energy consumption as well as complicated operations. Besides, repeating cleaning will trigger the deterioration of membranes and shorten their lifetime, elevating cost expenditures accordingly. In this way, GDM filtration stands out from conventional MBR technologies in a long-term operation with relative stable flux, which has been observed in many studies. The objective of this study was to monitor the biofilm development on a flat sheet membrane submerged in a GDM reactor with constant gravitational pressure. Morphology of biofilm layer in a fixed position was acquired by an in-situ and on-line OCT (optical coherence tomography) scanning at regular intervals for both visual investigation and structure analysis. The calculated thickness and roughness were compared to the variation of flux, fouling resistance and permeate quality, showing expected consistency. At the end of experiment, the morphology of entire membrane surface was scanned and recorded by OCT. Membrane autopsy was carried out for biofilm composition analysis by total organic carbon (TOC) and liquid chromatography with organic carbon detection (LC-OCD). In addition, biomass concentration was obtained by flow cytometer and adenosine tri-phosphate (ATP) method. The data of biofilm components indicated a homogeneous biofilm structure formed after a long-term running of the GDM system, based on the morphology observation by OCT images. The superiority of GDM in both flux maintaining and long-term operation with production of high quality effluent was demonstrated, as well as the suitability of OCT for biofouling monitoring was emphasized.
    Thumbnail

    Antibiofilm effect enhanced by modification of 1,2,3-triazole and palladium nanoparticles on polysulfone membranes

    Cheng, Hong (2015-08) [Thesis]
    Advisor: Hong, Pei-Ying
    Committee members: Nunes, Suzana Pereira; Wang, Peng
    Biofouling impedes the performance of membrane bioreactors. In this study, we investigated the antifouling effects of polysulfone membranes that were modified by 1,2,3-triazole and palladium nanoparticles. The membranes to be tested were embedded within a drip flow biofilm reactor, and Pseudomonas aeruginosa PAO1 was inoculated and allowed to establish biofilm on the tested membranes. It was found that 1,2,3-triazole and palladium nanoparticles can inhibit the bacterial growth in aerobic and anaerobic conditions. The decrease in bacterial growth was observed along with a decrease in the amount of total polysaccharide and Pel polysaccharide within the biofilm matrix but not the protein content.
    Thumbnail

    The regeneration of a liquid desiccant using direct contact membrane distillation to unlock the potential of coastal desert agriculture

    Cribbs, Kimberly (2018-04) [Thesis]
    Advisor: Leiknes, TorOve
    Committee members: Ghaffour, NorEddine; Tester, Mark A.
    In Gulf Cooperation Council (GCC) countries, a lack of freshwater, poor soil quality, and ambient temperatures unsuitable for cultivation for parts of the year hinders domestic agriculture. The result is a reliance on a fluctuating supply of imported fresh produce which may have high costs and compromised quality. There are agricultural technologies available such as hydroponics and controlled environment agriculture (CEA) that can allow GCC countries to overcome poor soil quality and ambient temperatures unsuitable for cultivation, respectively. Evaporative cooling is the most common form of cooling for CEA and requires a significant amount of water. In water-scarce regions, it is desirable for sea or brackish water to be used for evaporative cooling. Unfortunately, in many coastal desert regions, evaporative cooling does not provide enough cooling due to the high wet-bulb temperature of the ambient air during hot and humid months of the year. A liquid desiccant dehumidification system has been proven to lower the wet-bulb temperature of ambient air in the coastal city of Jeddah, Saudi Arabia to a level that allows for evaporative cooling to meet the needs of heat-sensitive crops. Much of the past research on the regeneration of the liquid desiccant solution has been on configurations that release water vapor back to the atmosphere. Studies have shown that the amount of water captured by the liquid desiccant when used to dehumidify a greenhouse can supply a significant amount of the water needed for irrigation. This thesis studied the regeneration of a magnesium chloride (MgCl2) liquid desiccant solution from approximately 20 to 31wt% by direct contact membrane distillation and explored the possibility of using the recovered water for irrigation. Two microporous hydrophobic PTFE membranes were experimentally tested and modeled when the bulk feed and coolant temperature difference was between 10 and 60°C. In eight experiments, the salt rejection was higher than 99.97% and produced permeate suitable for irrigation with a concentration of MgCl2 less than 94 ppm.
    Thumbnail

    Evaluation and Preliminary Design of a Stormwater Aquifer Storage and Recovery (ASR) System at the Wadi Khulays Dunefield in Saudi Arabia

    Lopez Valencia, Oliver M. (2013-04) [Thesis]
    Advisors: Amy, Gary L.; Missimer, Thomas M.
    Committee members: Ghaffour, NorEddine; Saikaly, Pascal E.
    An important source of freshwater in arid lands is found in groundwater aquifers that are recharged after storm events. However, most of the precipitation is lost due to evaporation and only small fractions actually recharge the aquifers. The construction of dams along wadi channels enables the retention of stormwater, however the reservoirs are still subject to huge evaporative losses and contamination. In this study, the hydraulic properties of a dunefield in western Saudi Arabia are evaluated in order to determine the feasibility of designing a stormwater storage aquifer storage and recovery facility using the dune sands as a natural medium and design recommendations are addressed. The accurate estimation of hydraulic conductivity of unlithified sediments such as dune sands has become very important in the design of natural filtration projects, including aquifer recharge and recovery systems. Therefore, a comparison and selection of methods for the determination of the hydraulic conductivity from grain size distribution found in the literature was done. An improvement to these equations based on measurements on dune samples was obtained.
    Thumbnail

    Mesoporous Carbon Produced from Tri-constituent Mesoporous Carbon-silica Composite for Water Purification

    Yu, Yanjie (2012-05) [Thesis]
    Advisor: Wang, Peng
    Committee members: Amy, Gary L.; Aubry, Cyril; Zhang, Zhonghai
    Highly ordered mesoporous carbon-silica nanocomposites with interpenetrating carbon and silica networks were synthesized by the evaporation-induced tri-constituent co- assembly approach. The removal of silica by concentrated NaOH solution produced mesoporous carbons, which contained not only the primary large pores, but also the secondary mesopores in the carbon walls. The thus synthesized mesoporous carbon was further activated by using ZnCl2. The activated mesoporous carbon showed an improved surface area and pore volume. The synthesized mesoporous carbon was tested for diuron removal from water and the results showed that the carbon gave a fast diuron adsorption kinetics and a high diuron removal capacity, which was attributable to the primary mesopore channels being the highway for mass transfer, which led to short diffusion path length and easy accessibility of the interpenetrated secondary mesopores. The optimal adsorption capacity of the porous carbon was determined to be 390 mg/g, the highest values ever reported for diuron adsorption on carbon-based materials.
    Thumbnail

    Investigating effects of hypertonic saline solutions on lipid monolayers at the air-water interface

    Nava Ocampo, Maria F. (2017-05) [Thesis]
    Advisor: Mishra, Himanshu
    Committee members: Nunes, Suzana Pereira; Takanabe, Kazuhiro
    More than 70,000 people worldwide suffer from cystic fibrosis, a genetic disease characterized by chronic accumulation of mucus in patients’ lungs provoking bacterial infections, and leading to respiratory failure. An employed age-old treatment to prevent the symptoms of the disease is inhalation of hypertonic saline solution, NaCl at concentrations higher than in the human body (~150 mM). This procedure clears the mucus in the lungs, bringing relief to the patient. However, the biophysical mechanisms underlying this process are not entirely clear. We undertook a new experimental approach to understand the effects of sprayed saline solutions on model lung surfactants towards understanding the mechanisms of the treatment. The surface of lungs contains mainly 1,2-Dipalmitol-sn-glycero-3-phosphocoline (DPPC). As previously assumed by others, we considered that monolayer of DPPC at the air-water interface serves as model system for the lungs surface; we employed a Langmuir-Blodgett (LB) trough and PM-IRRAS to measure surface-specific infrared spectra of the surfactant monolayers and effects on the interfacial tensions. We investigated spraying hyper-saline solutions onto surfactant monolayers at the airwater interface in two parts: (i) validation of our methodology and techniques with stearic acid and (ii) experiments with DPPC monolayers at the air-water interface. Remarkably, when micro-droplets of NaCl were sprayed to the monolayer of stearic acid, we observed enhanced organization of the surfactant, interpreted from the intensities of the CH2 peaks in the surface-specific IR spectra. However, our results with DPPC monolayers didn’t show an effect with the salt added as aerosol, possibly indicating that the experimental methodology proposed is not adequate for the phenomena studied. In parallel, we mimicked respiratory mucous by preparing salt solutions containing 1% (wt%) agar and measured effects on their viscosities. Interestingly, we found that NaCl was much more effective than NaI and NaClO4. This thesis reports structural dynamics of monolayers of stearic acid and DPPC at the airwater interfaces and those of aqueous solutions towards understanding mechanisms underlying the most commonly employed treatment for cystic fibrosis. Our methodology has never been reported before; but requires further modifications to gain deeper insights into the effects of salt sprays on model lung systems.
    Thumbnail

    Nanocomposite Membrane via Magnetite Nanoparticle Assembly

    Xie, Yihui (2012-07) [Thesis]
    Advisor: Nunes, Suzana Pereira
    Committee member: Peinemann, Klaus-Viktor
    Membrane technology is one of the most promising technologies for addressing the global water crisis as well as in many other applications. One of the drawbacks of current ultra- and nanofiltration membranes is the relatively broad pore size distribution. Block copolymer membranes with ultrahigh permeability and very regular pore sizes have been recently demonstrated with pores being formed by the supramolecular assembly of core/shell micelles. Our study aimed at developing an innovative and economically efficient alternative method to fabricate isoporous membrane by self-assembly of magnetic nanoparticle with a polystyrene shell, mimicking the behavior of block copolymer micelle. Fe3O4 nanoparticles of ~13 nm diameter were prepared by co-precipitation as cores. The initiator for ATRP was covalently bonded onto the surface of magnetic nanoparticles with two strategies. Then the surface initiated ATRP of styrene was carried out to functionalize nanoparticles with polystyrene through a “grafting from” method. Finally, the nanocomposite membrane was cast from 50 wt % Fe3O4@PS brush polymer solution in DMF via non solvent phase inversion. Microscopies reveal an asymmetric membrane with a dense thin layer on top of a porous sponge-like layer. This novel class of asymmetric membrane, based on the pure assembly of functionalized nanoparticles was prepared for the first time. The nanoparticles are well distributed however with no preferential order yet in the as-cast film.I would like to thank my committee chair and advisor, Prof. Suzana Nunes, and other committee members, Prof. Klaus-Viktor Peinemann and Prof. Gary Amy, for their guidance and support throughout the course of this research. My appreciation also goes to my colleagues in our group for useful discussions and suggestions. I also want to extend my gratitude to the staff from the KAUST Core Lab for Advanced Nanofabrication, Imaging and Characterization, especially Dr. Ali Reza Behzad, Dr. Rachid Sougrat, and Dr. Long Chen, for their assistance for various microscopy measurements. Finally, my heartfelt gratitude is extended to my parents and all my friends. I cannot finish this thesis without their encouragement and support.
    Thumbnail

    Significance of Microbiology in Porous Hydrocarbon Related Systems

    Augsburger, Nicolas (2017-07) [Thesis]
    Advisor: Santamarina, Carlos
    Committee members: Wang, Peng; Daffonchio, Daniele
    This thesis explores bio-mediated processes in geotechnical and petroleum engineering. Worldwide energy consumption is rapidly increasing as the world population and per-capita consumption rises. The US Energy Information Agency (EIA) predicts that hydrocarbons will remain the primary energy source to satisfy the surging energy demands in the near future. The three topics described in detail in this document aim to link microbiology with geotechnical engineering and the petroleum industry. Microorganisms have the potential to exploit residual hydrocarbons in depleted reservoirs in a technique known as microbial enhanced oil recovery, MEOR. The potential of biosurfactants was analyzed in detail with a literature review. Biosurfactant production is the most accepted MEOR technique, and has been successfully implemented in over 700 field cases. Temperature is the main limiting factor for these techniques. The dissolution of carbonates by microorganisms was investigated experimentally. We designed a simple, economical, and robust procedure to monitor diffusion through porous media. This technique determined the diffusion coefficient of H+ in 1.5% agar, 1.122 x 10-5 cm2 sec-1, by using bromothymol blue as a pH indicator and image processing. This robust technique allows for manipulation of the composition of the agar to identify the effect of specific compounds on diffusion. The Red Sea consists of multiple seeps; the nearby sediments are telltales of deeper hydrocarbon systems. Microbial communities associated with the sediments function as in-situ sensors that provide information about the presence of carbon sources, metabolites, and the remediation potential. Sediments seeps in the Red Sea revealed different levels of bioactivity. The more active seeps, from the southern site in the Red Sea, indicated larger pore sizes, higher levels of carbon, and bioactivity with both bacteria and archaeal species present.
    • 1
    • 2
    • 3
    • 4
    • . . .
    • 6
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.