For more information visit: https://bese.kaust.edu.sa/study/Pages/EnSE.aspx

Recent Submissions

  • Phylogenomics of Porites from the Arabian Peninsula.

    Terraneo, Tullia Isotta; Benzoni, Francesca; Arrigoni, Roberto; Baird, Andrew H; Mariappan, Kiruthiga; Forsman, Zac H; Wooster, Michael K; Bouwmeester, Jessica; Marshell, Alyssa; Berumen, Michael L. (Molecular phylogenetics and evolution, Elsevier BV, 2021-04-04) [Article]
    The advent of high throughput sequencing technologies provides an opportunity to resolve phylogenetic relationships among closely related species. By incorporating hundreds to thousands of unlinked loci and single nucleotide polymorphisms (SNPs), phylogenomic analyses have a far greater potential to resolve species boundaries than approaches that rely on only a few markers. Scleractinian taxa have proved challenging to identify using traditional morphological approaches and many groups lack an adequate set of molecular markers to investigate their phylogenies. Here, we examine the potential of Restriction-site Associated DNA sequencing (RADseq) to investigate phylogenetic relationships and species limits within the scleractinian coral genus Porites. A total of 126 colonies were collected from 16 localities in the seas surrounding the Arabian Peninsula and ascribed to 12 nominal and two unknown species based on their morphology. Reference mapping was used to retrieve and compare nearly complete mitochondrial genomes, ribosomal DNA, and histone loci. De novo assembly and reference mapping to the P. lobata coral transcriptome were compared and used to obtain thousands of genome-wide loci and SNPs. A suite of species discovery methods (phylogenetic, ordination, and clustering analyses) and species delimitation approaches (coalescent-based, species tree, and Bayesian Factor delimitation) suggested the presence of eight molecular lineages, one of which included six morphospecies. Our phylogenomic approach provided a fully supported phylogeny of Porites from the Arabian Peninsula, suggesting the power of RADseq data to solve the species delineation problem in this speciose coral genus.
  • Digital insights: bridging the phenotype-to-genotype divide

    McCabe, Matthew; Tester, Mark A. (Journal of Experimental Botany, Oxford University Press (OUP), 2021-04-02) [Article]
    The convergence of autonomous platforms for field-based phenotyping with advances in machine learning for big data analytics and rapid sequencing for genome description herald the promise of new insights and discoveries in the plant sciences. Han et al. (2021) leverage these emerging tools to navigate the challenging path from field-based mapping of phenotypic features to identifying specific genetic loci in the laboratory: in this case, loci responsible for regulating daily flowering time in lettuce. While their contribution neatly illustrates these exciting technological developments, it also highlights the work that remains to bridge these multidisciplinary fields to more fully deliver upon the promise of digital agriculture.
  • Assimilation of soil moisture and canopy cover data improves maize simulation using an under-calibrated crop model

    Lu, Yang; Chibarabada, Tendai P.; Ziliani, Matteo G.; Onema, Jean Marie Kileshye; McCabe, Matthew; Sheffield, Justin (Agricultural Water Management, Elsevier BV, 2021-04-02) [Article]
    Parameter calibration is normally required prior to crop model simulation, which can be a time-consuming and data-intensive task. Meanwhile, the growth stages of different hybrids/cultivars of the same crop often show some similarities, which implies that phenological parameters calibrated for one hybrid/cultivar may be useful for the simulation of another. In this study, a data assimilation framework is proposed to reduce the requirement for parameter calibration for maize simulation using AquaCrop. The phenological parameters were uniformly scaled from previous research performed in a different location for a different maize hybrid, and other parameters were taken from default settings in the model documentation. To constrain simulation uncertainties, soil moisture and canopy cover observations were assimilated both separately and jointly in order to update model states. The methodology was tested across a rain-fed field in Nebraska for 6 growing seasons. The results suggested that the under-calibrated model with uniformly scaled phenological parameters captured the temporal dynamics of crop growth, but may lead to large estimation bias. Data assimilation effectively improved model performance, and the joint assimilation outperformed single-variable assimilation. When soil moisture and canopy cover were jointly assimilated, the overall yield estimates (RMSE = 1.24 t/ha, nRMSE = 11.48%, R2 = 0.695) were improved over the no-assimilation case (RMSE = 2.01 t/ha, nRMSE = 18.61%, R2 = 0.338). Sensitivity analyses suggested that the improvement was still evident with temporally sparse soil moisture observations and a small ensemble size. Further testing using observations within 90 days after planting demonstrated that the method was able to predict yield around 3 months before harvest (RMSE = 1.7 t/ha, nRMSE = 15.74%). This study indicated that maize yield can be estimated and predicted accurately by monitoring the soil moisture and canopy status, which has potential for regional applications using remote sensing data.
  • Microfluidic Integrated Organic Electrochemical Transistor with a Nanoporous Membrane for Amyloid-β Detection

    Koklu, Anil; Wustoni, Shofarul; Musteata, Valentina-Elena; Ohayon, David; Moser, Maximilian; McCulloch, Iain; Nunes, Suzana Pereira; Inal, Sahika (ACS Nano, American Chemical Society (ACS), 2021-03-30) [Article]
    Alzheimer’s disease (AD) is a neurodegenerative disorder associated with a severe loss in thinking, learning, and memory functions of the brain. To date, no specific treatment has been proven to cure AD, with the early diagnosis being vital for mitigating symptoms. A common pathological change found in AD-affected brains is the accumulation of a protein named amyloid-β (Aβ) into plaques. In this work, we developed a micron-scale organic electrochemical transistor (OECT) integrated with a microfluidic platform for the label-free detection of Aβ aggregates in human serum. The OECT channel–electrolyte interface was covered with a nanoporous membrane functionalized with Congo red (CR) molecules showing a strong affinity for Aβ aggregates. Each aggregate binding to the CR-membrane modulated the vertical ion flow toward the channel, changing the transistor characteristics. Thus, the device performance was not limited by the solution ionic strength nor did it rely on Faradaic reactions or conformational changes of bioreceptors. The high transconductance of the OECT, the precise porosity of the membrane, and the compactness endowed by the microfluidic enabled the Aβ aggregate detection over eight orders of magnitude wide concentration range (femtomolar–nanomolar) in 1 μL of human serum samples. We expanded the operation modes of our transistors using different channel materials and found that the accumulation-mode OECTs displayed the lowest power consumption and highest sensitivities. Ultimately, these robust, low-power, sensitive, and miniaturized microfluidic sensors helped to develop point-of-care tools for the early diagnosis of AD.
  • Novel hole-pillar spacer design for improved hydrodynamics and biofouling mitigation in membrane filtration.

    Qamar, Adnan; Kerdi, Sarah; Ali, Syed Muztuza; Shon, Ho Kyong; Vrouwenvelder, Johannes S.; Ghaffour, NorEddine (Scientific reports, Springer Nature, 2021-03-27) [Article]
    Feed spacers are the critical components of any spiral-wound filtration module, dictating the filtration performance. Three spacer designs, namely a non-woven commercial spacer (varying filament cross-section), a symmetric pillar spacer, and a novel hole-pillar spacer (constant filament diameter) were studied using Direct Numerical Simulations (DNS), 3-D printed and subsequently experimentally tested in a lab-scale ultrafiltration set-up with high biofouling potential feed water at various feed pressures. Independent of the applied pressure, the novel hole-pillar spacer showed initially the lowest feed channel pressure drop, the lowest shear stress, and the highest permeate flux compared to the commercial and pillar spacers. Furthermore, less biofilm thickness development on membrane surface was visualized by Optical Coherent Tomography (OCT) imaging for the proposed hole-pillar spacer. At higher feed pressure, a thicker biofilm developed on membrane surface for all spacer designs explaining the stronger decrease in permeate flux at high pressure. The findings systematically demonstrated the role of various spacer designs and applied pressure on the performance of pre-treatment process, while identifying specific shear stress distribution guidelines for engineering a new spacer design in different filtration techniques.
  • Real-Time Personal Fever Alert Monitoring by Wearable Detector Based on Thermoresponsive Hydrogel

    Wang, Wenbin; Wu, Chen; Zhu, Kai; Chen, Fang; Zhou, Jingjing; Shi, Yusuf; Zhang, Chenlin; Li, Renyuan; Wu, Mengchun; Zhuo, Sifei; Zhang, Hepeng; Wang, Peng (ACS Applied Polymer Materials, American Chemical Society (ACS), 2021-03-23) [Article]
    Quick fever screening at a mass scale is proven effective during a pandemic to single out the ones with suspected symptoms of infectious diseases. However, achieving affordable and real-time fever alert at an individual level, although more preferable, remains elusive. Herein, we report an inexpensive and highly sensitive fever detector, which possesses a sharp color transition temperature window tailor-tuned for fever screening. The sensing component of the detector is rationally designed thermoresponsive agarose@poly(N-isopropylacrylamide)-co-acrylamide hydrogel. The hydrogel turns from transparent to opaque white when its temperature is higher than its cloud point. As a proof of concept of its practical applicability, a wearable fever monitoring device was fabricated in the form of a wristband. When the wrist temperature is higher than the threshold of a human fever, the device shows a remarkable color change, alerting an elevated body temperature. The wearable detector provides a promising strategy for real-time fever alert monitoring and is capable of making contributions to inhibit the spread of infectious diseases during a pandemic.
  • Optimizing the energy recovery section in thermal desalination systems for improved thermodynamic, economic, and environmental performance

    Jamil, Muhammad Ahmad; Goraya, Talha S.; Ng, Kim Choon; Zubair, Syed M.; Xu, Ben Bin; Shahzad, Muhammad Wakil (International Communications in Heat and Mass Transfer, Elsevier BV, 2021-03-23) [Article]
    Integration of energy recovery section with thermal desalination systems improves their performance from thermodynamics, economics, and environmental viewpoints. This is because it significantly reduces input energy, heat transfer area, and capital cost requirements. Above all, the system outlet streams can achieve thermal equilibrium with the environment by supplying heat for useful preheating purposes thus reducing the environmental impacts. The plate heat exchangers are generally employed for this purpose as preheaters. The current paper presents a comprehensive investigation and optimization of these heat exchangers for thermal desalination systems applications. An experimentally validated numerical model employing Normalized Sensitivity Analysis and Genetic Algorithm based cost optimization is developed to investigate their performance at assorted operating conditions. The analysis showed that the heat transfer coefficient, pressure drop, and outlet water cost were improved by an increase in feed flow rate. However, with an increased flow rate, the comprehensive output parameter (h/ΔP) decreased due to the high degree increase in pressure drop. Moreover, an increase in the chevron angle reduced the heat transfer coefficient, pressure drop, and water cost. Finally, the optimization lowered the heat transfer area by ~79.5%, capital investment by ~62%, and the outlet cost of the cold stream by ~15.7%. The operational cost is increased due to the increased pressure drop but the overall impact is beneficial as Ctotal of equipment is reduced by ~52.7%.
  • Monitoring of hollow fiber module velocity field and fouling inside individual fibers using benchtop MRI

    Yan, Bin; Bristow, Nicholas W.; Vogt, Sarah J.; Vrouwenvelder, Johannes S.; Johns, Michael L.; Fridjonsson, Einar O. (Journal of Membrane Science, Elsevier BV, 2021-03-22) [Article]
    Ultrafiltration (UF) membrane modules are a viable pre-treatment technology for reverse osmosis processes; they however are susceptible to fouling. In the current study, we demonstrate the use of benchtop MRI to provide quantitative structural and velocity images of an UF membrane module showing velocity inside each individual fiber and proceed to provide unique insights into both subsequent fouling and cleaning events. The module consists of 400 fibers, these all were correctly identified from the MRI images based on an implemented fiber identification algorithm. Velocity imaging of the UF module, revealed significant water flow in only 91% of the fibers. Following fouling with a calcium alginate gel, only 73% of the fibers were observed to be active which only recovered to 79% on application of a cleaning protocol using acetic acid. Fouling was clearly isolated to specific fibers in which flow was effectively eliminated; this is not consistent with the assumption of uniform fouling deposition on the inner fiber walls. This also restricts the access of cleaning solutions which effectively by-pass the fouled fibres. This level of novel, quantitative insight is available on benchtop MRI equipment, which displays significant promise for further hollow fiber UF module design, manufacturing and fouling development and control studies.
  • Neotype designation and re-description of Forsskål’s reticulate whipray Himantura uarnak

    Borsa, Philippe; Williams, Collin T.; Mcivor, Ashlie; Hoareau, Thierry B.; Berumen, Michael L. (Marine Biodiversity, Springer Nature, 2021-03-17) [Article]
    A continuing impediment to the taxonomy of the reticulate whipray Himantura spp. species complex is the absence of a type specimen for H. uarnak (Gmelin [ex Forsskål], 1789). Here, reticulate whipray specimens were sampled from the Jeddah region in the Red Sea, the assumed type locality of H. uarnak, and characterized genetically at the cytochrome-oxidase subunit 1 (CO1) locus. One of these specimens now in the fish collection of the California Academy of Sciences was designated as neotype. The maximum-likelihood phylogeny of all available CO1 gene sequences from the genus Himantura had the following topology: ((H. leoparda, H. uarnak), (H. undulata, (Himantura sp. 2, (H. australis + Himantura sp. 1))), H. tutul), where H. uarnak haplotypes formed a distinct lineage sister to H. leoparda. Based on these CO1 gene sequences, the geographic distribution of H. uarnak includes the eastern Mediterranean, the Red Sea, the East African coast, and the Arabian Sea. At least one lineage in the reticulate whipray species complex remains to be named.
  • State-of-the-art of renewable energy sources used in water desalination: Present and future prospects

    Bundschuh, Jochen; Kaczmarczyk, Michał; Ghaffour, NorEddine; Tomaszewska, Barbara (Desalination, Elsevier BV, 2021-03-16) [Article]
    The last decade has seen a worldwide increase in the use of alternative energy sources, especially renewable energy (RE), including its application in desalination. In the past many experimental and pilot investigations were presented which allowed the costs and effectiveness of such integrated solutions to be estimated. The present review describes experience related to the use of solar thermal technologies (solar collector and concentrated solar power technologies), solar electricity (photovoltaic and concentrator photovoltaics), wind, hydroelectric (hydropower, tidal, wave and ocean thermal energy), biomass and geothermal energy (power and thermal) as well as hybrid systems. The costs relating to energy and desalinated water production are investigated in the case of various technological processes used in desalination. The main directions for development of the RE systems investigated are discussed and their advantages and disadvantages are assessed. Such a comprehensive review showed that the expansion of the effective use of RE sources is still hampered by several techno-economic aspects. The paper focuses on the main concerns of the need to optimise energy processes, especially by creating more energy-efficient and economically effective solutions, energy storage, energy recovery and the expansion of off-grid systems. As a result of the analysis it was concluded that, despite some disadvantages, the combining of RE with desalination processes requires further intensive research and demonstration units for longer term performance. Regulations to develop less energy-intensive desalination technologies are also still needed.
  • Microbial Succession under Freeze–Thaw Events and Its Potential for Hydrocarbon Degradation in Nutrient-Amended Antarctic Soil

    Jesus, Hugo Emiliano de; Carreira, Renato S.; Paiva, Simone S. M.; Massone, Carlos; Enrich-Prast, Alex; Peixoto, Raquel S.; Rodrigues, Jorge L. Mazza; Lee, Charles K.; Cary, Craig; Rosado, Alexandre S. (Microorganisms, MDPI AG, 2021-03-16) [Article]
    The polar regions have relatively low richness and diversity of plants and animals, and the basis of the entire ecological chain is supported by microbial diversity. In these regions, understanding the microbial response against environmental factors and anthropogenic disturbances is essential to understand patterns better, prevent isolated events, and apply biotechnology strategies. The Antarctic continent has been increasingly affected by anthropogenic contamination, and its constant temperature fluctuations limit the application of clean recovery strategies, such as bioremediation. We evaluated the bacterial response in oil-contaminated soil through a nutrient-amended microcosm experiment using two temperature regimes: (i) 4 °C and (ii) a freeze–thaw cycle (FTC) alternating between −20 and 4 °C. Bacterial taxa, such as Myxococcales, Chitinophagaceae, and Acidimicrobiales, were strongly related to the FTC. Rhodococcus was positively related to contaminated soils and further stimulated under FTC conditions. Additionally, the nutrient-amended treatment under the FTC regime enhanced bacterial groups with known biodegradation potential and was efficient in removing hydrocarbons of diesel oil. The experimental design, rates of bacterial succession, and level of hydrocarbon transformation can be considered as a baseline for further studies aimed at improving bioremediation strategies in environments affected by FTC regimes.
  • Efficient cooling tower operation at alkaline pH for the control of Legionella pneumophila and other pathogenic genera

    Pinel, I.S.M.; Hankinson, P.M.; Moed, D.H.; Wyseure, L.J.; Vrouwenvelder, Johannes S.; van Loosdrecht, Mark C.M. (Water Research, Elsevier BV, 2021-03-15) [Article]
    Efficient control of pathogenic bacteria, specifically Legionella pneumophila, is one of the main concerns when operating industrial cooling towers. Common practices to limit proliferation involves use of disinfectants, leading to formation of disinfection by-product and increase in water corrosiveness. A disinfectant-free Legionella control method would make the industry more environmentally friendly. A pilot-scale cooling tower (1 m3/h) operated with demineralized water was used to investigate the potential of high-pH conditioning as a disinfectant-free alternative for control of L. pneumophila and other pathogens. One control experiment was performed under standard full-scale operation involving sodium hypochlorite dosage. Thereafter 3 alkaline pHs of the cooling water were tested: 9.0, 9.4 and 9.6. The tests lasted between 25 and 35 days. The cooling water from the basins were analysed for total cell count by flow cytometry, L. pneumophila concentration by plate count and occasional qPCR analyses targeting the mip-gene, bacterial and eukaryotic community analyses with 16S and 18S rRNA gene amplicon sequencing, relative abundance of eukaryotic to prokaryotic DNA by qPCR of the 16S and 18S rRNA gene. The L. pneumophila analyses showed considerable growth at pH 9.0 and pH 9.4 but was maintained below detection limit (< 100 CFU/L) at pH 9.6 without disinfection. Interestingly, the results correlated with the overall abundance of protozoa in the water samples but not directly with the relative abundance of specific reported protozoan hosts of Legionella. The pathogenicity based on 16S rRNA gene amplicon sequencing of the cooling water DNA decreased with increasing pH with a strong decline between pH 9.0 and pH 9.4, from 7.1 % to 1.6 % of relative abundance of pathogenic genera respectively. A strong shift in microbiome was observed between each tested pH and reproducibility of the experiment at pH 9.6 was confirmed with a duplicate test lasting 80 days. High-pH conditioning ≥ 9.6 is therefore considered as an efficient disinfectant-free cooling tower operation for control of pathogenicity, including L. pneumophila.
  • Harnessing the Extracellular Electron Transfer Capability of Geobacter sulfurreducens for Ambient Synthesis of Stable Bifunctional Single-Atom Electrocatalyst for Water Splitting

    Pedireddy, Srikanth; Jimenez Sandoval, Rodrigo J.; Ravva, Mahesh Kumar; Nayak, Chandrani; Anjum, Dalaver H.; Jha, Shambhu Nath; Katuri, Krishna; Saikaly, Pascal (Advanced Functional Materials, Wiley, 2021-03-15) [Article]
    Single-atom metal (SA-M) catalysts with high dispersion of active metal sites allow maximum atomic utilization. Conventional synthesis of SA-M catalysts involves high-temperature treatments, leading to low yield with a random distribution of atoms. Herein, a nature-based facile method to synthesize SA-M catalysts (M = Fe, Ir, Pt, Ru, Cu, or Pd) in a single step at ambient temperature, using the extracellular electron transfer capability of Geobacter sulfurreducens (GS), is presented. Interestingly, the SA-M is coordinated to three nitrogen atoms adopting an MN3 on the surface of GS. Dry samples of SA-Ir@GS without further heat treatment show exceptionally high activity for oxygen evolution reaction when compared to benchmark IrO2 catalyst and comparable hydrogen evolution reaction activity to commercial 10 wt% Pt/C. The SA-Ir@GS exhibits the best water-splitting performance compared to other SA-M@GS, showing a low applied potential of 1.65 V to achieve 10 mA cm−2 in 1.0 M KOH with cycling over 5 h. The density functional calculations reveal that the large adsorption energy of H2O and moderate adsorption energies of reactants and reaction intermediates for SA-Ir@GS favorably improve its activity. This synthesis method at room temperature provides a versatile platform for the preparation of SA-M catalysts for various applications by merely altering the metal precursors.
  • Implications of nest relocation for morphology and locomotor performance of green turtle (Chelonia mydas) hatchlings

    Tanabe, Lyndsey K.; Steenacker, Marion; Rusli, Mohd Uzair; Berumen, Michael L. (Ocean & Coastal Management, Elsevier BV, 2021-03-14) [Article]
    Sea turtle scute abnormalities are observed in higher proportion in hatchlings compared to adults, suggesting that hatchlings with a non-modal scute pattern (NMSP) have a lower chance of surviving to adulthood. In this study, we collected 732 newly emerged hatchlings from Redang Island, Malaysia, and compared their scute classification, size, and mass to fitness correlates (self-righting ability, crawling speed, and swimming speed). We investigated the proportion of hatchlings from each nest with NMSP to determine if there was a correlation with incubation duration or clutch relocation. We found relocated clutches at Chagar Hutang Turtle Sanctuary had a significantly shorter incubation duration with a higher proportion of NMSP compared to in situ clutches. Hatchlings’ mass were significantly heavier from in situ clutches compared to relocated clutches, although there were no significant differences of hatchling speed based on scute classification or clutch type. The difference of hatchling mass between in situ and relocated clutches could affect predation and mortality rates on recently emerged hatchlings. These findings have important conservation implications, suggesting that relocation should only be implemented on clutches with a high potential to be disrupted or with a low chance of survival if left in situ. Our findings highlight the need for a standard procedure when clutch relocation is used as a conservation strategy. Relocation should replicate natural nest dimensions by duplicating both nest width and depth, and clutches should be relocated to similar shade conditions as the natural nest.
  • A pilot-scale sulfur-based sulfidogenic system for the treatment of Cu-laden electroplating wastewater using real domestic sewage as electron donor.

    Li, Guibiao; Liang, Zhensheng; Sun, Jianliang; Qiu, Yanying; Qiu, Chuyin; Liang, Xiaomin; Zhu, Yuhang; Wang, Peng; Li, Yu; Jiang, Feng (Water research, Elsevier BV, 2021-03-14) [Article]
    Elemental sulfur (S0) reduction process has been demonstrated as an attractive and cost-efficient approach for metal-laden wastewater treatment in lab-scale studies. However, the system performance and stability have not been evaluated in pilot- or large-scale wastewater treatment. Especially, the sulfide production rate and microbial community structure may significantly vary from lab-scale system to pilot- or large-scale systems using real domestic sewage as carbon source, which brings questions to this novel technology. In this study, therefore, a pilot-scale sulfur-based sulfidogenic treatment system was newly developed and applied for the treatment of Cu-laden electroplating wastewaters using domestic sewage as carbon source. During the 175-d operation, >99.9% of Cu2+ (i.e., 5580 and 1187 mg Cu/L for two types of electroplating wastewaters) was efficiently removed by the biogenic hydrogen sulfide that produced through S0 reduction. Relatively high level of sulfide production (200 mg S/L) can be achieved by utilizing organics in raw domestic sewage, which was easily affected by the organic content and pH value of the domestic sewage. The long-term feeding of domestic sewage significantly re-shaped the microbial community in sulfur-reducing bioreactors. Compared to the reported lab-scale bioreactors, higher microbial community diversity was found in our pilot-scale bioreactors. The presence of hydrolytic, fermentative and sulfur-reducing bacteria was the critical factor for system stability. Accordingly, a two-step ecological interaction among fermentative and sulfur-reducing bacteria was newly proposed for sulfide production: biodegradable particulate organic carbon (BPOC) was firstly degraded to dissolved organic carbon (DOC) by the hydrolytic and fermentative bacteria. Then, sulfur-reducing bacteria utilized the total DOC (both DOC degraded from BPOC and the original DOC present in domestic sewage) as electron donor and reduced the S0 to sulfide. Afterwards, the sulfide precipitated Cu2+ in the post sedimentation tank. Compared with other reported technologies, the sulfur-based treatment system remarkable reduced the total chemical cost by 87.5‒99.6% for the same level of Cu2+ removal. Therefore, this pilot-scale study demonstrated that S0 reduction process can be a sustainable technology to generate sulfide for the co-treatment of Cu-laden electroplating wastewater and domestic sewage, achieving higher Cu2+removal and higher cost-effectiveness than the conventional technologies.
  • Assessment of Wastewater Quality of Paharang Drain and its Impact on the Ground Water Quality of Adjacent Areas

    Khalid, Muhammad Zeeshan; Nawaz, Muhammad Saqib; Jamil, Asma; Ghaffour, NorEddine (International Journal of Economic and Environmental Geology, International Journal of Economic and Environmental Geology (IJEEG), published by SEGMITE, 2021-03-11) [Article]
    This study was conducted to assess the effect of wastewater quality of Paharang drain Faisalabad on ground water quality of adjacent areas. Ground water samples and drain water samples were collected and analyzed by using standard methods. Parameters of wastewater samples were compared with Pakistan National Environmental Quality Standards (NEQS). Results indicated that physico-chemical parameters including pH, total dissolved solids (TDS), chloride, fluoride and total hardness were found exceeding the permissible limits in wastewater samples. Similarly, few physicochemical parameters in groundwater were found within the permissible limit while electrical conductivity (EC), TDS, chlorides (Cl), fluoride (F), and total hardness in most of samples were found above the Pak EPA and WHO standard limits. Heavy metals like nickel (Ni), chromium (Cr), iron (Fe), lead (Pb), and arsenic (As) were found within the prescribed concentrations in drain and ground water samples. Statistical analysis showed significant effect of some drain wastewater parameters like conductivity, TDS, salt, temperature, and Cl on the corresponding ground water quality. A strong positive correlation between pH, EC, TDS, Salt, and Cl in drain wastewater and strong positive correlation between EC, TDS and Salt in ground water samples was observed. For improving the ground water quality in the adjacent areas textile wastewater treatment all factories is required, and a combined effluent treatment plant (CETP) at the Paharang drain is also recommended.
  • Red Sea fish market assessments indicate high species diversity and potential overexploitation

    Shellem, Claire T.; Ellis, Joanne; Coker, Darren James; Berumen, Michael L. (Fisheries Research, Elsevier BV, 2021-03-11) [Article]
    In many parts of the world, particularly remote and underdeveloped regions, reports of fisheries catch, effort, and landing data are limited. In order to implement effective fishing regulations to protect natural stocks, understanding fishing pressure, key target species, catch composition, and value of each species is vital. In regions where published data is limited, and the sampling of numerous small boats and landing sites is not feasible, fish market surveys represent an opportunity to obtain key fisheries data. This study therefore aims to obtain species-specific prices and market composition for fish landed in the central Red Sea by surveying local fish markets. We conducted 11 surveys at two major Red Sea fish markets to ascertain key fisheries metrics using market data as a proxy for catch data. Results indicate that a high proportion of the market composition is generated by 46 species from six family-level groups, Serranidae, Labridae, scarine labrids, Carangidae, Lethrinidae, and Lutjanidae, contributing to 87 % of the total market biomass. Species-specific values ranged from 4.50 USD/kg to 26.44 USD/kg, with market surveys highlighting the economic value of three local serranid species: Plectropomus pessuliferus marisrubri, Plectropomus areolatus and Variola louti, all valued at more than 25 USD/kg, and a labrid: Cheilinus undulatus, valued at 26.44 USD/kg. The Serranidae family represents 47 % of the total biomass and 55 % of the potential revenue in the market, while also indicating potentially overfished reefs due to the high occurrence of smaller species and undersized individuals of higher priced serranid species. Many of the high-valued serranids were below the size at sexual maturity. Target species exhibited small body size and decreasing abundance, potentially indicating a “shrinking baseline” scenario occurring in the Saudi Arabian artisanal coral reef fishery. These results indicate that introducing effective fisheries legislation and management is necessary for the longevity and sustainability of the reef-based fishery in the Saudi Arabian Red Sea. Implementing catch quotas, size limits, and seasonal restrictions are potential mechanisms that could be used to facilitate positive change within this vulnerable fishery.
  • Center pivot field delineation and mapping: A satellite-driven object-based image analysis approach for national scale accounting

    Johansen, Kasper; Lopez Valencia, Oliver Miguel; Tu, Yu-Hsuan; Li, Ting; McCabe, Matthew (ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier BV, 2021-03-06) [Article]
    Center pivot irrigation systems are used to enhance crop production in many countries around the world. Establishing the location and extent of such fields provides information that assists in describing a range of agricultural metrics, including crop identification, yield forecasts, monitoring of irrigation requirements and crop water use, as well as supporting national and regional auditing, licensing and compliance efforts. However, detailed information on the number, extent and changing dynamics of agricultural fields is often lacking in many countries: nowhere more so than in developing regions. To address this lack, we performed a national scale accounting of center pivot fields in Saudi Arabia, using a three year multi-temporal analysis of Landsat-8 satellite data. A geographic object-based image analysis approach was developed based on five 50 × 50 km sub-areas extracted from Landsat data for the year 2015, and applied to delineate individual center pivot fields at a national scale for 2013, 2014 and 2015. The extent of fields was determined via a map of the annual maximum Normalized Difference Vegetation Index (NDVI), while a 15 m spatial resolution map of annual panchromatic band minimums was used to produce an edge detection layer to delineate individual adjoining fields. Amongst a range of classification parameters that were included in the object-based mapping approach, shape information, such as the center pivot field length, length:width ratio, and elliptic fit, were identified as critical parameters. Applying the rule-set that was developed from the five 50 × 50 km sub-regions to the national scale resulted in the identification of 36,052 (11,103 km2), 38,114 (11,902 km2), and 37,254 (11,555 km2) individual fields in 2013, 2014, and 2015, respectively. Approximately 94% of these fields were correctly detected, while their individually measured area was mapped with >95% combined accuracy for fields >0.225 km2 when evaluated against manually delineated fields. Smaller center pivot fields, and specifically those adjoining neighbouring fields, had lower area mapping accuracies (>91% in 75% of cases). The object-based approach allowed a national scale and multi-temporal assessment of center pivot field delineation and mapping, affording new insights into agricultural practice and providing a methodological basis for examining the impact of water management and related policy initiatives, amongst many other potential applications. Apart from filling a clear knowledge gap in Saudi Arabia, the approach has the potential to be expanded elsewhere: particularly to similar locations within the Middle East and North Africa.
  • Strategies for Integrated Capture and Conversion of CO 2 from Dilute Flue Gases and the Atmosphere

    Maina, James W.; Pringle, Jennifer M.; Razal, Joselito M.; Nunes, Suzana Pereira; Vega, Lourdes; Gallucci, Fausto; Dumée, Ludovic F. (ChemSusChem, Wiley, 2021-03-05) [Article]
    The integrated capture and conversion of CO<sub>2</sub> has the potential to make valorization of the greenhouse gas more economically competitive, by eliminating energy-intensive regeneration processes. However, integration is hindered by the extremely low concentrations of CO<sub>2</sub> present in the atmosphere (0.04 vol.%), and the presence of acidic gas contaminants, such as SO<sub>x</sub> and NO<sub>x</sub> , in flue gas streams. This Review summarizes the latest technological progress in the integrated capture and conversion of CO<sub>2</sub> from dilute flue gases and atmospheric air. In particular, the Review analyzes the correlation between material properties and their capture and conversion efficiency through hydrogenation, cycloaddition, and solar thermal-mediated electrochemical processes, with a focus on the types and quantities of product generated, in addition to their energy requirements. Prospects for commercialization are also highlighted and suggestions are made for future research.
  • Time-dependent pulsing of microfluidic pumps to enhance 3D bioprinting of peptide bioinks

    Khan, Zainab; Kahin, Kowther; Hauser, Charlotte (SPIE-Intl Soc Optical Eng, 2021-03-05) [Conference Paper, Presentation]
    Using bioinks for 3D bioprinting of cellular constructs remains a challenge due to factors including viscosity, fluid dynamics and shear stress. The encapsulation of cells within the bioinks directly affects the quality of 3D bioprinting and microfluidic pumping is a commonly used supporting approach. The accuracy of microfluidic pumps can be further improved by introducing various mixing techniques. However, many of these techniques introduce complex geometries or external fields. In this study, we used a simple control technique of time-dependent pulsing for instant gelation of the peptide bioinks and observed its effect during the bioprinting process. Various time-dependent periodic signals are imposed on to a stable flow cycle and the effects are analyzed. The microfluidic pumps are programmed with different flow patterns represented by low frequency sinusoidal pulses, ramp inputs, and duty cycle pulses. Different combinations of these pulses are tested to achieve an optimal pulse for improved quality of printed constructs. Time-varied pulsing of microfluidic pumps, particularly as square waveforms, is found to provide better continuous flow and avoid material buildup within the extruder unit when compared to pumping at a constant flow rate with manual tuning. Clogging is avoided since the gelation rate is periodically reduced which avoids gel clumps in the printed constructs. This study substantially improves the use of suitable peptide bioinks, standardizes the 3D bioprinting process, and reduces clogging and clumping during printing. Our findings allow for printing of more accurate and complex constructs for applications in tissue engineering, such as skin grafting, and other regenerative medical applications.

View more