For more information visit:

Recent Submissions

  • Direct imaging of an inhomogeneous electric current distribution using the trajectory of magnetic half-skyrmions

    Zhang, Senfu; Zhang, Xichao; Zhang, Junwei; Ganguly, Arnab; Xia, Jing; Wen, Yan; Zhang, Qiang; Yu, Guoqiang; Hou, Zhipeng; Wang, Wenhong; Peng, Yong; Xiao, Gang; Manchon, Aurelien; Kosel, Jürgen; Zhou, Yan; Zhang, Xixiang (Science Advances, American Association for the Advancement of Science (AAAS), 2020-02-08) [Article]
    The direct imaging of current density vector distributions in thin films has remained a daring challenge. Here, we report that an inhomogeneous current distribution can be mapped directly by the trajectories of magnetic half-skyrmions driven by an electrical current in Pt/Co/Ta trilayer, using polar magneto-optical Kerr microscopy. The half-skyrmion carries a topological charge of 0.5 due to the presence of Dzyaloshinskii-Moriya interaction, which leads to the half-skyrmion Hall effect. The Hall angle of half-skyrmions is independent of current density and can be reduced to as small as 4° by tuning the thickness of the Co layer. The Hall angle is so small that the elongation path of half-skyrmion approximately delineates the invisible current flow as demonstrated in both a continuous film and a curved track. Our work provides a practical technique to directly map inhomogeneous current distribution even in complex geometries for both fundamental research and industrial applications.
  • Electric-Field-Enhanced Bulk Perpendicular Magnetic Anisotropy in GdFe/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 Multiferroic Heterostructure

    Chen, Aitian; Zhang, Senfu; Wen, Yan; Huang, Haoliang; Kosel, Jürgen; Lu, Yalin; Zhang, Xixiang (ACS Applied Materials & Interfaces, American Chemical Society (ACS), 2019-11-18) [Article]
    Perpendicular magnetic anisotropy is important for increasing the information storage density in the perpendicular magnetic recording media, and for rare earth-transition metal alloys with bulk perpendicular magnetic anisotropy that generate great research interest due to their abundant interesting phenomena, such as fast domain wall motion and skyrmion. Here, we deposit amorphous GdFe ferrimagnetic films on Pb(Mg1/3Nb2/3)0.7Ti0.3O3 ferroelectric substrate and investigate the effect of electric-field-induced piezostrain on its bulk perpendicular magnetic anisotropy. The anomalous Hall effect and polar Kerr image measurements suggest an enhanced bulk perpendicular magnetic anisotropy by electric field, which originates from a positive magnetoelastic anisotropy due to the positive magnetostriction coefficient of the GdFe film and the electric-field-induced tensile strain along the z axis in Pb(Mg1/3Nb2/3)0.7Ti0.3O3 ferroelectric substrate. Our results enrich the electrical control of perpendicular magnetic anisotropy and are useful for designing spintronic devices based on perpendicular magnetic anisotropy.
  • Effect of Segment length on domain wall pinning in multisegmented Co/Ni nanowires for 3D memory applications

    Moreno, Julián A.; Mohammed, Hanan; Kosel, Jürgen (Journal of Magnetism and Magnetic Materials, Elsevier BV, 2019-04-02) [Article]
    The interfaces between different materials in multisegmented nanowires act as pinning centers for domain walls, making these nanowires attractive materials for 3D memory devices. Here, the switching events which accompany a domain wall pinning and depinning in two-segmented Co/Ni nanowires with 80 nm in diameter have been simulated for various segment lengths, using the MAGPAR package within the Virtual Micromagnetics environment. Different switching mechanisms of the magnetization were found for nanowires with different segment lengths, contributing to different values of the pinning and depinnning fields. Domain wall pinning is caused by the stray field from the Co segment; therefore, the position of the pinned domain wall depends on the cobalt segment’s length: in case of the smaller segment lengths, the domain wall is pinned at the interface itself, whereas in case of 700 nm segments a 150 nm displacement of the pinned domain wall from the interface is found, consistent with experimental reports. Domain wall pinning is manifested as a plateau in the magnetization curve. In case of nanowires with shorter segments, another plateau is observed that is related to the creation of a magnetic vortex structure. These findings are crucial towards determining the minimum segment length to achieve a higher bit density that displays optimal pinning and depinning fields.
  • Liquid Dielectric Electrostatic Mems Switch And Method Of Fabrication Thereof

    Zidan, Mohammed A.; Kosel, Jürgen; Salama, Khaled N. (2018-06-21) [Patent]
    A microelectromechanical system (MEMS) switch with liquid dielectric and a method of fabrication thereof are provided. In the context of the MEMS switch, a MEMS switch is provided including a cantilevered source switch, a first actuation gate disposed parallel to the cantilevered source switch, a first drain disposed parallel to a movable end of the cantilevered source switch, and a liquid dielectric disposed within a housing of the microelectromechanical system switch.
  • Plasmonic Nanowires for Wide Wavelength Range Molecular Sensing

    Marinaro, Giovanni; Das, Gobind; Giugni, Andrea; Allione, Marco; Torre, Bruno; Candeloro, Patrizio; Kosel, Jürgen; Di Fabrizio, Enzo M. (Materials, MDPI AG, 2018-05-17) [Article]
    In this paper, we propose the use of a standing nanowires array, constituted by plasmonic active gold wires grown on iron disks, and partially immersed in a supporting alumina matrix, for surface-enhanced Raman spectroscopy applications. The galvanic process was used to fabricate nanowires in pores of anodized alumina template, making this device cost-effective. This fabrication method allows for the selection of size, diameter, and spatial arrangement of nanowires. The proposed device, thanks to a detailed design analysis, demonstrates a broadband plasmonic enhancement effect useful for many standard excitation wavelengths in the visible and NIR. The trigonal pores arrangement gives an efficiency weakly dependent on polarization. The devices, tested with 633 and 830 nm laser lines, show a significant Raman enhancement factor, up to around 6 × 10⁴, with respect to the flat gold surface, used as a reference for the measurements of the investigated molecules.
  • Current Controlled Magnetization Switching in Cylindrical Nanowires for High-Density 3D Memory Applications

    Mohammed, Hanan; Corte-León, Hector; Ivanov, Yurii P.; Lopatin, Sergei; Moreno, Julian A.; Chuvilin, Andrey; Salimath, Akshaykumar; Manchon, Aurelien; Kazakova, Olga; Kosel, Jürgen (arXiv, 2018-04-18) [Preprint]
    A next-generation memory device utilizing a three-dimensional nanowire system requires the reliable control of domain wall motion. In this letter, domain walls are studied in cylindrical nanowires consisting of alternating segments of cobalt and nickel. The material interfaces acting as domain wall pinning sites, are utilized in combination with current pulses, to control the position of the domain wall, which is monitored using magnetoresistance measurements. Magnetic force microscopy results further confirm the occurrence of current assisted domain wall depinning. Data bits are therefore shifted along the nanowire by sequentially pinning and depinning a domain wall between successive interfaces, a requirement necessary for race-track type memory devices. We demonstrate that the direction, amplitude and duration of the applied current pulses determine the propagation of the domain wall across pinning sites. These results demonstrate a multi-bit cylindrical nanowire device, utilizing current assisted data manipulation. The prospect of sequential pinning and depinning in these nanowires allows the bit density to increase by several Tbs, depending on the number of segments within these nanowires.
  • Transparent biocompatible sensor patches for touch sensitive prosthetic limbs

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jürgen (2016 10th International Conference on Sensing Technology (ICST), Institute of Electrical and Electronics Engineers (IEEE), 2016-12-26) [Conference Paper]
    The paper presents the fabrication of transparent, flexible sensor patches developed using a casting technique with polydimethylsiloxane (PDMS) as substrate and a nanocomposite of carbon nanotubes (CNTs) and PDMS as interdigital electrodes. The electrodes act as strain sensitive capacitor. The prototypes were used as touch sensitive sensors attached to the limbs. Experiments results show the sensitivity of the patches towards tactile sensing. The results are very promising and can play a key role in the development of a cost efficient sensing system attached to prosthetic limbs.
  • Piezoelectric transducer array microspeaker

    Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Castro, David; Kosel, Jürgen; Foulds, Ian G. (2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Institute of Electrical and Electronics Engineers (IEEE), 2016-12-19) [Conference Paper]
    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50
  • Digital electrostatic acoustic transducer array

    Carreno, Armando Arpys Arevalo; Castro, David; Conchouso Gonzalez, David; Kosel, Jürgen; Foulds, Ian G. (2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Institute of Electrical and Electronics Engineers (IEEE), 2016-12-19) [Conference Paper]
    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.
  • On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    Gooneratne, Chinthaka Pasan; Kodzius, Rimantas; Li, Fuquan; Foulds, Ian G.; Kosel, Jürgen (Sensors, MDPI AG, 2016-08-26) [Article]
    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device
  • Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

    Yassine, Omar; Zaher, Amir; Li, Erqiang; Alfadhel, Ahmed; Perez, Jose E.; Kavaldzhiev, Mincho; Contreras, Maria F.; Thoroddsen, Sigurdur T; Khashab, Niveen M.; Kosel, Jürgen (Scientific Reports, Springer Nature, 2016-06-23) [Article]
    Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.
  • Fabrication and characterization of magnetic composite membrane pressure sensor

    Khan, Mohammed Asadullah; Alfadhel, Ahmed; Kosel, Jürgen; Bakolka, M. (2016 IEEE Sensors Applications Symposium (SAS), Institute of Electrical and Electronics Engineers (IEEE), 2016-05-30) [Conference Paper]
    This paper describes a magnetic field powered pressure sensor, which comprises a coil array and a magnetic composite membrane. The composite membrane is made by embedding a ribbon of the amorphous soft magnetic alloy Vitrovac®, in a 17 mm x 25 mm x 1.5 mm Polydimethylsiloxane (PDMS) layer. PDMS is chosen for its low Young's modulus and the amorphous alloy for its high permeability. The membrane is suspended 1.5 mm above a 17x19 array of microfabricated planar coils. The coils are fabricated by patterning a 620 nm thick gold layer. Each coil occupies an area of 36000 μm2 and consists of 14 turns. The sensor is tested by subjecting it to pressure and simultaneously exciting it by a 24 A/m, 100 kHz magnetic field. A pressure change from 0 kPa to 5.1 kPa, results in a 5400 ppm change in the voltage output.
  • Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery

    Yassine, Omar; Li, Erqiang; Alfadhel, Ahmed; Zaher, A.; Kavaldzhiev, Mincho; Thoroddsen, Sigurdur T; Kosel, Jürgen (International Journal of Polymer Science, Hindawi Limited, 2016-05-26) [Article]
    Responsive microgel poly(N-isopropylacrylamide) or PNIPAM is a gel that can swell or shrink in response to external stimuli (temperature, pH, etc.). In this work, a nanocomposite gel is developed consisting of PNIPAM and magnetic iron oxide nanobeads for controlled release of liquids (like drugs) upon exposure to an alternating magnetic field. Microparticles of the nanocomposite are fabricated efficiently with a monodisperse size distribution and a diameter ranging from 20 to 500 µ m at a rate of up to 1 kHz using a simple and inexpensive microfluidic system. The nanocomposite is heated through magnetic losses, which is exploited for a remotely stimulated liquid release. The efficiency of the microparticles for controlled drug release applications is tested with a solution of Rhodamine B as a liquid drug model. In continuous and pulsatile mode, a release of 7% and 80% was achieved, respectively. Compared to external thermal actuation that heats the entire surrounding or embedded heaters that need complex fabrication steps, the magnetic actuation provides localized heating and is easy to implement with our microfluidic fabrication method.
  • Improved detection limits for phthalates by selective solid-phase micro-extraction

    Zia, Asif I.; Afsarimanesh, Nasrin; Xie, Li; Nag, Anindya; Al-Bahadly, I. H.; Yu, P. L.; Kosel, Jürgen (2015 9th International Conference on Sensing Technology (ICST), Institute of Electrical and Electronics Engineers (IEEE), 2016-03-30) [Conference Paper]
    Presented research reports on an improved method and enhanced limits of detection for phthalates; a hazardous additive used in the production of plastics by solid-phase micro-extraction (SPME) polymer in comparison to molecularly imprinted solid-phase extraction (MISPE) polymer. The polymers were functionalized on an interdigital capacitive sensor for selective binding of phthalate molecules from a complex mixture of chemicals. Both polymers owned predetermined selectivity by formation of valuable molecular recognition sites for Bis (2-ethylhexyl) phthalate (DEHP). Polymers were immobilized on planar electrochemical sensor fabricated on a single crystal silicon substrate with 500 nm sputtered gold electrodes fabricated using MEMS fabrication techniques. Impedance spectra were obtained using electrochemical impedance spectroscopy (EIS) to determine sample conductance for evaluation of phthalate concentration in the spiked sample solutions with various phthalate concentrations. Experimental results revealed that the ability of SPME polymer to adsorb target molecules on the sensing surface is better than that of MISPE polymer for phthalates in the sensing system. Testing the extracted samples using high performance liquid chromatography with photodiode array detectors validated the results.
  • Performance enhancement of electronic sensor through mask-less lithography

    Nag, Anindya; Zia, Asif I.; Mukhopadhyay, S. C.; Kosel, Jürgen (2015 9th International Conference on Sensing Technology (ICST), Institute of Electrical and Electronics Engineers (IEEE), 2016-03-30) [Conference Paper]
    The escalating applications of miniaturized sensors have led the microelectronics industry to stay abreast with the precise micro-fabrication technologies. The following article describes a new technique for the fabrication of miniaturized interdigitated capacitive sensors that own highly sensitive and real-time detections capabilities. In standard lithographic procedure, the sensors are fabricated applying different photoresist materials that give rise to the variable characteristic profile of the fabricated product. Single crystal p-doped Silicon wafer was used as a substrate material due to its advantageous properties over Germanium. Heidelberg system was used for the maskless lithographic patterning of the new interdigital sensors on a silicon substrate. The process was carried out in a clean room in the absence of ultraviolet light at a fixed temperature. The fabricated sensors were used for inflammable gas sensing application. Electrochemical Impedance Spectroscopy was applied to read the resistive and capacitive impedance measured by the sensor. The results proclaimed that the fabricated sensors own better performance in LPG detection as compared to its commercial counterparts.
  • Semi-automated quantification of living cells with internalized nanostructures

    Margineanu, Michael B.; Julfakyan, Khachatur; Sommer, Christoph; Perez, Jose E.; Contreras, Maria F.; Khashab, Niveen M.; Kosel, Jürgen; Ravasi, Timothy (Journal of Nanobiotechnology, Springer Nature, 2016-01-15) [Article]
    Background Nanostructures fabricated by different methods have become increasingly important for various applications in biology and medicine, such as agents for medical imaging or cancer therapy. In order to understand their interaction with living cells and their internalization kinetics, several attempts have been made in tagging them. Although methods have been developed to measure the number of nanostructures internalized by the cells, there are only few approaches aimed to measure the number of cells that internalize the nanostructures, and they are usually limited to fixed-cell studies. Flow cytometry can be used for live-cell assays on large populations of cells, however it is a single time point measurement, and does not include any information about cell morphology. To date many of the observations made on internalization events are limited to few time points and cells. Results In this study, we present a method for quantifying cells with internalized magnetic nanowires (NWs). A machine learning-based computational framework, CellCognition, is adapted and used to classify cells with internalized and no internalized NWs, labeled with the fluorogenic pH-dependent dye pHrodo™ Red, and subsequently to determine the percentage of cells with internalized NWs at different time points. In a “proof-of-concept”, we performed a study on human colon carcinoma HCT 116 cells and human epithelial cervical cancer HeLa cells interacting with iron (Fe) and nickel (Ni) NWs. Conclusions This study reports a novel method for the quantification of cells that internalize a specific type of nanostructures. This approach is suitable for high-throughput and real-time data analysis and has the potential to be used to study the interaction of different types of nanostructures in live-cell assays.
  • Novel sensing approach for LPG leakage detection: Part II: Effects of particle size, composition and coating layer thickness

    Mukhopadhyay, Subhas; Nag, Anindya; Zia, Asif; Li, Xie; Kosel, Jürgen (IEEE Sensors Journal, Institute of Electrical and Electronics Engineers (IEEE), 2015-10-30) [Article]
    Prominent research has been going on to develop a low-cost, efficient gas sensing system. The paper presents a continuation of our earlier research work done to develop a new sensing approach for gas detection at ambient conditions. The work exhibits the optimization of the response time of the sensor by inhabiting characteristic changes like variation in the concentration of the dispersion medium, thickness of the coating and the size of the dispersed medium. Different concentrations of the dispersion medium in the coated suspension were tested to determine the optimal composition required to achieve the highest sensitivity of the tin oxide (SnO2) layer towards the tested gas. The control over adsorption and desorption of the gas molecules in the coated layer was achieved by investigating the particle size of the dispersed medium. The response time of the coated sensor was encouraging and owns a promising potential to the development of a more efficient gas sensing system.
  • Novel sensing approach for LPG leakage detection: Part I: Operating Mechanism and Preliminary Results

    Mukhopadhyay, Subhas; Nag, Anindya; Zia, Asif; Li, Xie; Kosel, Jürgen (IEEE Sensors Journal, Institute of Electrical and Electronics Engineers (IEEE), 2015-10-30) [Article]
    Gas sensing technology has been among the topical research work for quite some time. This paper showcases the research done on the detection mechanism of leakage of domestic cooking gas at ambient conditions. MEMS-based interdigital sensors were fabricated on oxidized single crystal silicon surfaces by maskless photolithography technique. The electrochemical impedance analysis of these sensors was done to detect liquefied petroleum gas (LPG) with and without coated particles of tin oxide (SnO2) in form of thin layer.A thin-film of SnO2 was spin-coated on the sensing surface of the interdigital sensor to induce selectivity to LPG that consists of a 60/40 mixture of propane and butane respectively. The paper reports a novel strategy for gas detection under ambient temperature and humidity conditions. The response time of the coated sensor was encouraging and own a promising potential to the development of a complete efficient gas sensing system.
  • Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    Zaher, Amir; Li, S.; Wolf, K. T.; Pirmoradi, F. N.; Yassine, Omar; Lin, L.; Khashab, Niveen M.; Kosel, Jürgen (Biomicrofluidics, AIP Publishing, 2015-09-29) [Article]
    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.
  • A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve

    Yi, Ying; Zaher, Amir; Yassine, Omar; Kosel, Jürgen; Foulds, Ian G. (Biomicrofluidics, AIP Publishing, 2015-07-22) [Article]
    Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve's closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled.

View more