## Search

Now showing items 1-10 of 12

JavaScript is disabled for your browser. Some features of this site may not work without it.

AuthorIm, Hong G. (7)Arias, Paul G. (3)Lee, Bok Jik (3)Samtaney, Ravi (3)Zhang, Wei (3)View MoreDepartmentMechanical Engineering Program (12)Physical Sciences and Engineering (PSE) Division (12)Clean Combustion Research Center (9)Reactive Flow Modeling Laboratory (RFML) (2)Computational Reacting Flow Laboratory (CRFL) (1)JournalCombustion and Flame (4)Computers & Fluids (4)Combustion Science and Technology (1)Mathematical Modelling of Natural Phenomena (1)Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (1)View MoreKAUST Acknowledged Support UnitCompetitive Research (1)Competitive Research Funds (1)Shaheen (1)Supercomputing Laboratory (1)KAUST Grant NumberURF/1/1394-01 (1)PublisherElsevier BV (9)EDP Sciences (1)Informa UK Limited (1)The Royal Society (1)Subject

Direct numerical simulation (12)

Blow-off (3)Premixed flames (3)Transition (3)Airfoil (2)View MoreTypeArticle (12)Year (Issue Date)2018 (3)2016 (2)2015 (4)2014 (2)2012 (1)Item AvailabilityMetadata Only (6)Open Access (5)Embargoed (1)

Now showing items 1-10 of 12

- List view
- Grid view
- Sort Options:
- Relevance
- Title Asc
- Title Desc
- Issue Date Asc
- Issue Date Desc
- Submit Date Asc
- Submit Date Desc
- Results Per Page:
- 5
- 10
- 20
- 40
- 60
- 80
- 100

Dynamics of lean premixed flames stabilized on a meso-scale bluff-body in an unconfined flow field

Kim, Yu Jeong; Lee, Bok Jik; Im, Hong G. (Mathematical Modelling of Natural Phenomena, EDP Sciences, 2018-09-27) [Article]

Two-dimensional direct numerical simulations were conducted to investigate the dynamics of lean premixed flames stabilized on a meso-scale bluff-body in hydrogen-air and syngas-air mixtures. To eliminate the flow confinement effect due to the narrow channel, a larger domain size at twenty times the bluff-body dimension was used in the new simulations. Flame/flow dynamics were examined as the mean inflow velocity is incrementally raised until blow-off occurs. As the mean inflow velocity is increased, several distinct modes in the flame shape and fluctuation patterns were observed. In contrast to our previous study with a narrow channel, the onset of local extinction was observed during the asymmetric vortex shedding mode. Consequently, the flame stabilization and blow-off behavior was found to be dictated by the combined effects of the hot product gas pocket entrained into the extinction zone and the ability to auto-ignite the mixture within the given residence time corresponding to the lateral flame fluctuations. A proper time scale analysis is attempted to characterize the flame blow-off mechanism, which turns out to be consistent with the classic theory of Zukoski and Marble.

Hydrodynamic and chemical scaling for blow-off dynamics of lean premixed flames stabilized on a meso-scale bluff-body

Kim, Yu Jeong; Lee, Bok Jik; Im, Hong G. (Proceedings of the Combustion Institute, Elsevier BV, 2018-08-30) [Article]

Direct numerical simulations were conducted to investigate the effect of two parameters, density ratio and laminar flame speed, on the conditions of the onset of local extinction and blow-off of lean premixed flames, stabilized on a meso-scale bluff-body in hydrogen-air and syngas–air mixtures. A total of six simulation cases were considered as isolated comparison of the two parametric effects of the fluid dynamic instability and flame time scale. For all cases under study, the general flame development towards the blow-off limit showed a sequence of five distinct modes, with possible cyclic patterns among the different modes for a range of velocity conditions. The onset of local extinction was observed during the asymmetric vortex shedding and vortex street mode. As the density ratio is decreased, the flow inunder reviewstability is promoted through the increased sinuous mode, and such behavior was properly scaled by the Strouhal number. Although the blow-off velocity is altered by the fluid dynamic effects, the condition for the onset of local extinction and blow-off was mainly dictated by the competition between flow residence time associated with the lateral flame motion and ignition delay of the local mixtures. Time scale analysis supported the validity of the findings across all the cases investigated.

Direct numerical simulations of reacting flows with detailed chemistry using many-core/GPU acceleration

Hernandez Perez, Francisco; Mukhadiyev, Nurzhan; Xu, Xiao; Sow, Aliou; Lee, Bok Jik; Sankaran, Ramanan; Im, Hong G. (Computers & Fluids, Elsevier BV, 2018-03-29) [Article]

A new direct numerical simulation (DNS) code for multi-component gaseous reacting flows has been developed at KAUST, with the state-of-the-art programming model for next generation high performance computing platforms. The code, named KAUST Adaptive Reacting Flows Solver (KARFS), employs the MPI+X programming, and relies on Kokkos for “X” for performance portability to multi-core, many-core and GPUs, providing innovative software development while maintaining backward compatibility with established parallel models and legacy code. The capability and potential of KARFS to perform DNS of reacting flows with large, detailed reaction mechanisms is demonstrated with various model problems involving ignition and turbulent flame propagations with varying degrees of chemical complexities.

Direct Numerical Simulations of Statistically Stationary Turbulent Premixed Flames

Im, Hong G.; Arias, Paul G.; Chaudhuri, Swetaprovo; Uranakara, Harshavardhana A. (Combustion Science and Technology, Informa UK Limited, 2016-07-15) [Article]

Direct numerical simulations (DNS) of turbulent combustion have evolved tremendously in the past decades, thanks to the rapid advances in high performance computing technology. Today’s DNS is capable of incorporating detailed reaction mechanisms and transport properties of hydrocarbon fuels, with physical parameter ranges approaching laboratory scale flames, thereby allowing direct comparison and cross-validation against laser diagnostic measurements. While these developments have led to significantly improved understanding of fundamental turbulent flame characteristics, there are increasing demands to explore combustion regimes at higher levels of turbulent Reynolds (Re) and Karlovitz (Ka) numbers, with a practical interest in new combustion engines driving towards higher efficiencies and lower emissions. The article attempts to provide a brief overview of the state-of-the-art DNS of turbulent premixed flames at high Re/Ka conditions, with an emphasis on homogeneous and isotropic turbulent flow configurations. Some important qualitative findings from numerical studies are summarized, new analytical approaches to investigate intensely turbulent premixed flame dynamics are discussed, and topics for future research are suggested. © 2016 Taylor & Francis.

Low-Re flow past an isolated cylinder with rounded corners

Zhang, Wei; Samtaney, Ravi (Computers & Fluids, Elsevier BV, 2016-07-01) [Article]

Direct numerical simulation is performed for flow past an isolated cylinder at Re=1,000. The corners of the cylinder are rounded at different radii, with the non-dimensional radius of curvature varying from R+=R/D=0.000 (square cylinder with sharp corners) to 0.500 (circular cylinder), in which R is the corner radius and D is the cylinder diameter. Our objective is to investigate the effect of the rounded corners on the development of the separated and transitional flow past the cylinder in terms of time-averaged statistics, time-dependent behavior, turbulent statistics and three-dimensional flow patterns. Numerical results reveal that the rounding of the corners significantly reduces the time-averaged drag and the force fluctuations. The wake flow downstream of the square cylinder recovers the slowest and has the largest wake width. However, the statistical quantities do not monotonically vary with the corner radius, but exhibit drastic variations between the cases of square cylinder and partially rounded cylinders, and between the latter and the circular cylinder. The free shear layer separated from the R+=0.125 cylinder is the most stable in which the first roll up of the wake vortex occurs furthest from the cylinder and results in the largest recirculation bubble, whose size reduces as R+ further increases. The coherent and incoherent Reynolds stresses are most pronounced in the near-wake close to the reattachment point, while also being noticeable in the shear layer for the square and R+=0.125 cylinders. The wake vortices translate in the streamwise direction with a convection velocity that is almost constant at approximately 80% of the incoming flow velocity. These vortices exhibit nearly the same trajectory for the rounded cylinders and are furthest away from the wake centerline for the square one. The flow past the square cylinder is strongly three-dimensional as indicated by the significant primary and secondary enstrophy, while it is dominated by the primary enstrophy (View the MathML source) for the rounded cylinders.

A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

Uranakara, Harshavardhana A.; Chaudhuri, Swetaprovo; Dave, Himanshu L.; Arias, Paul G.; Im, Hong G. (Combustion and Flame, Elsevier BV, 2015-11-21) [Article]

Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

Assessment of spanwise domain size effect on the transitional flow past an airfoil

Zhang, Wei; Samtaney, Ravi (Computers & Fluids, Elsevier BV, 2015-10-23) [Article]

In most large-eddy and direct numerical simulations of flow past an isolated airfoil, the flow is assumed periodic in the spanwise direction. The size of the spanwise domain is an important geometrical parameter determining whether the turbulent flow is fully developed, and whether the separation and transition patterns are accurately modeled. In the present study, we investigate the incompressible flow past an isolated NACA0012 airfoil at the angle of attack of 5 degrees and Reynolds number 5 × 104. The spanwise domain size Lz, represented by the aspect ratio AR=Lz/C where C is the airfoil chord length, is varied in the range 0.1−0.80.1−0.8. The effect of varying the normalized spanwise domain size AR is examined via direct numerical simulation (DNS) on several aspects of the turbulent flow quantities including the time-averaged and time-dependent behavior as well as the spanwise variation of the selected statistical quantities. DNS results reveal that different aspect ratios result in close predictions of the time-averaged aerodynamic quantities, and the velocity field except for a slight difference in the separation bubble. Smaller aspect ratios tend to underpredict the turbulent fluctuations near the separation point but overpredict them inside the separation bubble. Large differences are observed for multiple statistical quantities near the reattachment point, especially the turbulent kinetic energy budget terms. The leading edge separation is notably three-dimensional for simulation at AR=0.8, while remaining quasi-2D for smaller aspect ratios. The spanwise two-point correlation coefficient shows significant dependence on the position of the probe and the velocity component analyzed: small aspect ratios do not produce uncorrelated results for all the velocity components. The simulation results demonstrate that examining only a few statistical quantities may result in a misleading conclusion regarding the sufficiency of the spanwise domain size. Reliable metrics to establish the sufficiency of spanwise domain size require thorough analysis of the turbulent statistics, and are necessary for three-dimensional simulation of turbulent flow in similar configurations.

Dynamics of bluff-body-stabilized premixed hydrogen/air flames in a narrow channel

Lee, Bok Jik; Yoo, Chun Sang; Im, Hong G. (Combustion and Flame, Elsevier BV, 2015-06) [Article]

Two-dimensional direct numerical simulations were conducted for bluff-body stabilized flames of a lean hydrogen/air mixture at near-blowoff conditions in a meso-scale channel. Parametric simulations were conducted by incrementally varying the inflow velocity in the vicinity of the blowoff limit, and the corresponding flame response was monitored. The present study is a showcase of combustion DNS with embedded boundary representation, and full demonstration of the detailed visualization of the near-blowoff flame characteristics. As the inflow velocity approaches blowoff limit, the flame dynamics exhibit a complex sequence of events, such as periodic local extinction and recovery, and regrowth of the bulk flame by the flame segments attached behind the bluff-body. The total extinction is observed as the attached flames shrink down and are no longer able to regrow the bulk flames. Despite the disparity in the physical scale under study, the observed sequence of the extinction pathway shows a strong similarity with experimental observations at larger scale combustion systems. © 2015 The Combustion Institute.

Geometrical effects on the airfoil flow separation and transition

Zhang, Wei; Cheng, Wan; Gao, Wei; Qamar, Adnan; Samtaney, Ravi (Computers & Fluids, Elsevier BV, 2015-04-26) [Article]

We present results from direct numerical simulations (DNS) of incompressible flow over two airfoils, NACA-4412 and NACA-0012-64, to investigate the effects of the airfoil geometry on the flow separation and transition patterns at Re=104 and 10 degrees incidence. The two chosen airfoils are geometrically similar except for maximum camber (respectively 4%C and 0 with C the chord length), which results in a larger projection area with respect to the incoming flow for the NACA-4412 airfoil, and a larger leeward surface curvature at the leading edge for the NACA-0012-64 airfoil. The governing equations are discretized using an energy conservative fourth-order spatial discretization scheme. An assessment on the two-point correlation indicates that a spanwise domain size of 0.8C is sufficiently large for the present simulations. We discuss flow separation at the airfoil leading edge, transition of the separated shear layer to three-dimensional flow and subsequently to turbulence. Numerical results reveal a stronger adverse pressure gradient field in the leading edge region of the NACA-0012-64 airfoil due to the rapidly varying surface curvature. As a result, the flow experiences detachment at x/C=0.08, and the separated shear layer transition via Kelvin-Helmholtz mechanism occurs at x/C=0.29 with fully developed turbulent flow around x/C=0.80. These flow development phases are delayed to occur at much downstream positions, respectively, observed around x/C=0.25, 0.71 and 1.15 for the NACA-4412 airfoil. The turbulent intensity, measured by the turbulent fluctuations and turbulent Reynolds stresses, are much larger for NACA-0012-64 from the transition onset until the airfoil trailing edge, while turbulence develops significantly downstream of the trailing edge for the NACA-4412 airfoil. For both airfoils, our DNS results indicate that the mean Reynolds stress u'u'/U02 reaches its maximum value at a distance from the surface approximately equal to the displacement thickness, consistent with the experimental observations (Boutilier & Yarusevych, Phys. Fluids, 2012). A quantitative eigen-system analysis on the instantaneous velocity field shows that although the flow over an airfoil is intrinsically anisotropic, the alignments between the vorticity vector and the eigenvectors ofSij and SikSkj+ΩikΩkj are quite similar to those of the homogeneous isotropic turbulent flows due to the formation of vortex tubes. © 2015 Elsevier Ltd.

Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

Lecoustre, Vivien R.; Arias, Paul G.; Roy, Somesh P.; Luo, Zhaoyu; Haworth, Daniel C.; Im, Hong G.; Lu, Tianfeng; Trouvé, Arnaud C. (Combustion and Flame, Elsevier BV, 2014-11) [Article]

Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.