## Search

Now showing items 1-10 of 10

JavaScript is disabled for your browser. Some features of this site may not work without it.

AuthorSamtaney, Ravi (10)Al-Marouf, Mohamad (3)Zhang, Wei (3)Cheng, W. (2)Cheng, Wan (2)View MoreDepartment

Mechanical Engineering Program (10)

Physical Sciences and Engineering (PSE) Division (10)Mechanical Engineering (1)Mechanical Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia (1)JournalJournal of Fluid Mechanics (4)Defect and Diffusion Forum (2)Computers & Fluids (1)International Journal of Heat and Mass Transfer (1)Journal of Computational Physics (1)View MoreKAUST Acknowledged Support UnitCompetitive Research Funds (3)Shaheen (2)Baseline Research Funds (1)Cray XC40 Shaheen II (1)Office of Competitive Research Funds (1)View MoreKAUST Grant Number
URF/1/1394-01 (10)

PublisherCambridge University Press (CUP) (3)Elsevier BV (3)Trans Tech Publications (2)AIP Publishing (1)Cambridge University Press (1)Subjectboundary layer separation (2)turbulence simulation (2)Adaptive mesh refinement (1)AMR and embedded boundary methods (1)Boundary layers (1)View MoreTypeArticle (10)Year (Issue Date)2019 (3)2017 (2)2016 (4)2015 (1)Item AvailabilityMetadata Only (6)Open Access (3)Embargoed (1)

Now showing items 1-10 of 10

- List view
- Grid view
- Sort Options:
- Relevance
- Title Asc
- Title Desc
- Issue Date Asc
- Issue Date Desc
- Submit Date Asc
- Submit Date Desc
- Results Per Page:
- 5
- 10
- 20
- 40
- 60
- 80
- 100

Richtmyer-Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock

Zou, Liyong; Al-Marouf, Mahamad; Cheng, W.; Samtaney, Ravi; Ding, Juchun; Luo, Xisheng (Journal of Fluid Mechanics, Cambridge University Press (CUP), 2019-09-27) [Article]

The Richtmyer-Meshkov (RM) instability is numerically investigated on an unperturbed interface subjected to a diffracted convergent shock created by diffracting an initially cylindrical shock over a rigid cylinder. Four gas interfaces are considered with Atwood number ranging from 0.18 to 0.67. Results indicate that the diffracted convergent shock increases its strength gradually and reduces its amplitude quickly when it propagates towards the convergence centre. After the strike of the diffracted convergent shock, the initially unperturbed interface deforms with a bulge structure at the centre and two interface steps at both sides, which can be ascribed to the non-uniformity of the pressure distribution behind the diffracted convergent shock. With the decrease of Atwood number, the bulge structure becomes more pronounced. Quantitatively, the interface amplitude experiences a fast but short growing stage and then enters a linear stage. A good collapse of the dimensionless amplitude is found for all cases, which indicates a weak dependence of the growth rate on Atwood number in the deformed shock-induced RM instability. Then the impulsive theory is modified by eliminating the Atwood number and considering the geometry convergence, which well predicts the amplitude growth for the deformed shock-induced RM instability. Finally, the underlying mechanism is decoupled into three parts, and it is found that both the impulsive pressure perturbation and the geometry convergence promote the growth of interface perturbation while the continuous pressure perturbation inhibits the growth. As the Atwood number decreases, the impulsive perturbation plays an increasingly important role, which suggests that the impulsive perturbation dominates the deformed shock-induced RM instability at the linear stage.

Wall-modelled large-eddy simulation of turbulent flow past airfoils

Gao, Wei; Zhang, Wei; Cheng, Wan; Samtaney, Ravi (Journal of Fluid Mechanics, Cambridge University Press, 2019-06-24) [Article]

We present large-eddy simulation (LES) of flow past different airfoils with, based on the free-stream velocity and airfoil chord length, ranging from to. To avoid the challenging resolution requirements of the near-wall region, we develop a virtual wall model in generalized curvilinear coordinates and incorporate the non-equilibrium effects via proper treatment of the momentum equations. It is demonstrated that the wall model dynamically captures the instantaneous skin-friction vector field on arbitrary curved surfaces at the resolved scale. By combining the present wall model with the stretched-vortex subgrid-scale model, we apply the wall-modelled LES approach to three different airfoil cases, spanning different geometrical parameters, different attack angles and low to high. The numerical results are verified with direct numerical simulation (DNS) at low, and validated with experiment data at higher, including typical aerodynamic properties such as pressure coefficient distributions, velocity components and also more challenging measurements such as skin-friction coefficient and Reynolds stresses. All comparisons show reasonable agreement, providing a measure of validity that enables us to further probe simulation results into aspects of flow physics that are not available from experiments. Two techniques to quantify hitherto unexplored physics of flows past airfoils are employed: one is the construction of the anisotropy invariant map, and the second is skin-friction portraits with emphasis on flow transition and unsteady separation along the airfoil surface. The anisotropy maps for all three cases, show clearly that a portion of the flow field is aligned along the axisymmetric expansion line, corresponding to the turbulent boundary layer log-law behaviour and the appearance of turbulent transition. The instantaneous skin-friction portraits reveal a monotonic shrinking of the near wall structure scale. At, the interaction between the primary separation bubble and the secondary separation bubble contributes to turbulent transition, similar to the case of flow past a cylinder. At higher, the primary separation breaks into several small separation bubbles. At even higher, near the turbulent separation, the skin-friction lines show small-scale reversal flows that are similar to those observed in DNS of the flat plate turbulent separation. A notable feature of turbulent separation in flow past an airfoil is the appearance of turbulence structures and small-scale reversal flows in the spanwise direction due to the vortex shedding behaviour.

A Multi-Fluid Investigation of the Membrane Supporting Grid Effects on the Richtmyer-Meshkov Instability

Al-Marouf, Mohamad; Samtaney, Ravi (Defect and Diffusion Forum, Trans Tech Publications, 2019-01) [Article]

We present results of numerical experiments performed to evaluate the effects of the material interface supporting wire grid on the Richtmyer-Meshkov instability (RMI). An air-SF6 interface initially perturbed sinusoidally supported on a number of solid circular cylinders. These cylinders are introduced along the interface to mimic the presence of the grid thin wires. The resulted mixing and growth rate of the perturbation in the presence and absence of the supporting grid were analyzed and validated with experimental measurements. The small scales perturbation imposed by the cylinders are around two orders of magnitude smaller than the interface sinusoidal perturbation wavelength requiring the adaptive mesh refinement (AMR) to adequately resolve small scale features. Furthermore, an embedded boundary technique is used to handle the complex geometry stemming from the presence of these multiple. A multi-fluid formulation is utilized to form a multi-gas species interface and compute the gas mixture properties.

Large-eddy simulation of flow over a cylinder with from to : a skin-friction perspective

Cheng, Wan; Pullin, D. I.; Samtaney, Ravi; Zhang, W.; Gao, Wei (Journal of Fluid Mechanics, Cambridge University Press (CUP), 2017-05-05) [Article]

We present wall-resolved large-eddy simulations (LES) of flow over a smooth-wall circular cylinder up to , where is Reynolds number based on the cylinder diameter and the free-stream speed . The stretched-vortex subgrid-scale (SGS) model is used in the entire simulation domain. For the sub-critical regime, six cases are implemented with . Results are compared with experimental data for both the wall-pressure-coefficient distribution on the cylinder surface, which dominates the drag coefficient, and the skin-friction coefficient, which clearly correlates with the separation behaviour. In the super-critical regime, LES for three values of are carried out at different resolutions. The drag-crisis phenomenon is well captured. For lower resolution, numerical discretization fluctuations are sufficient to stimulate transition, while for higher resolution, an applied boundary-layer perturbation is found to be necessary to stimulate transition. Large-eddy simulation results at , with a mesh of , agree well with the classic experimental measurements of Achenbach (J. Fluid Mech., vol. 34, 1968, pp. 625-639) especially for the skin-friction coefficient, where a spike is produced by the laminar-turbulent transition on the top of a prior separation bubble. We document the properties of the attached-flow boundary layer on the cylinder surface as these vary with . Within the separated portion of the flow, mean-flow separation-reattachment bubbles are observed at some values of , with separation characteristics that are consistent with experimental observations. Time sequences of instantaneous surface portraits of vector skin-friction trajectory fields indicate that the unsteady counterpart of a mean-flow separation-reattachment bubble corresponds to the formation of local flow-reattachment cells, visible as coherent bundles of diverging surface streamlines.

A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry

Al-Marouf, Mohamad; Samtaney, Ravi (Journal of Computational Physics, Elsevier BV, 2017-02-25) [Article]

We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost-fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.

Low-Re flow past an isolated cylinder with rounded corners

Zhang, Wei; Samtaney, Ravi (Computers & Fluids, Elsevier BV, 2016-07-01) [Article]

Direct numerical simulation is performed for flow past an isolated cylinder at Re=1,000. The corners of the cylinder are rounded at different radii, with the non-dimensional radius of curvature varying from R+=R/D=0.000 (square cylinder with sharp corners) to 0.500 (circular cylinder), in which R is the corner radius and D is the cylinder diameter. Our objective is to investigate the effect of the rounded corners on the development of the separated and transitional flow past the cylinder in terms of time-averaged statistics, time-dependent behavior, turbulent statistics and three-dimensional flow patterns. Numerical results reveal that the rounding of the corners significantly reduces the time-averaged drag and the force fluctuations. The wake flow downstream of the square cylinder recovers the slowest and has the largest wake width. However, the statistical quantities do not monotonically vary with the corner radius, but exhibit drastic variations between the cases of square cylinder and partially rounded cylinders, and between the latter and the circular cylinder. The free shear layer separated from the R+=0.125 cylinder is the most stable in which the first roll up of the wake vortex occurs furthest from the cylinder and results in the largest recirculation bubble, whose size reduces as R+ further increases. The coherent and incoherent Reynolds stresses are most pronounced in the near-wake close to the reattachment point, while also being noticeable in the shear layer for the square and R+=0.125 cylinders. The wake vortices translate in the streamwise direction with a convection velocity that is almost constant at approximately 80% of the incoming flow velocity. These vortices exhibit nearly the same trajectory for the rounded cylinders and are furthest away from the wake centerline for the square one. The flow past the square cylinder is strongly three-dimensional as indicated by the significant primary and secondary enstrophy, while it is dominated by the primary enstrophy (View the MathML source) for the rounded cylinders.

BiGlobal linear stability analysis on low-Re flow past an airfoil at high angle of attack

Zhang, Wei; Samtaney, Ravi (Physics of Fluids, AIP Publishing, 2016-04-05) [Article]

We perform BiGlobal linear stability analysis on flow past a NACA0012 airfoil at 16° angle of attack and Reynolds number ranging from 400 to 1000. The steady-state two-dimensional base flows are computed using a well-tested finite difference code in combination with the selective frequency damping method. The base flow is characterized by two asymmetric recirculation bubbles downstream of the airfoil whose streamwise extent and the maximum reverse flow velocity increase with the Reynolds number. The stability analysis of the flow past the airfoil is carried out under very small spanwise wavenumber β = 10−4 to approximate the two-dimensional perturbation, and medium and large spanwise wavenumbers (β = 1–8) to account for the three-dimensional perturbation. Numerical results reveal that under small spanwise wavenumber, there are at most two oscillatory unstable modes corresponding to the near wake and far wake instabilities; the growth rate and frequency of the perturbation agree well with the two-dimensional direct numerical simulation results under all Reynolds numbers. For a larger spanwise wavenumber β = 1, there is only one oscillatory unstable mode associated with the wake instability at Re = 400 and 600, while at Re = 800 and 1000 there are two oscillatory unstable modes for the near wake and far wake instabilities, and one stationary unstable mode for the monotonically growing perturbation within the recirculation bubble via the centrifugal instability mechanism. All the unstable modes are weakened or even suppressed as the spanwise wavenumber further increases, among which the stationary mode persists until β = 4.

An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry

Al-Marouf, Mohamad; Samtaney, Ravi (Defect and Diffusion Forum, Trans Tech Publications, 2016-04) [Article]

We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well. © 2016 Trans Tech Publications.

Numerical simulation and global linear stability analysis of low-Re flow past a heated circular cylinder

Zhang, Wei; Samtaney, Ravi (International Journal of Heat and Mass Transfer, Elsevier BV, 2016-03-31) [Article]

We perform two-dimensional unsteady Navier-Stokes simulation and global linear stability analysis of flow past a heated circular cylinder to investigate the effect of aided buoyancy on the stabilization of the flow. The Reynolds number of the incoming flow is fixed at 100, and the Richardson number characterizing the buoyancy is varied from 0.00 (buoyancy-free case) to 0.10 at which the flow is still unsteady. We investigate the effect of aided buoyancy in stabilizing the wake flow, identify the temporal and spatial characteristics of the growth of the perturbation, and quantify the contributions from various terms comprising the perturbed kinetic energy budget. Numerical results reveal that the increasing Ri decreases the fluctuation magnitude of the characteristic quantities monotonically, and the momentum deficit in the wake flow decays rapidly so that the flow velocity recovers to that of the free-stream; the strain on the wake flow is reduced in the region where the perturbation is the most greatly amplified. Global stability analysis shows that the temporal growth rate of the perturbation decreases monotonically with Ri, reflecting the stabilization of the flow due to aided buoyancy. The perturbation grows most significantly in the free shear layer separated from the cylinder. As Ri increases, the location of maximum perturbation growth moves closer to the cylinder and the perturbation decays more rapidly in the far wake. The introduction of the aided buoyancy alters the base flow, and destabilizes the near wake shear layer mainly through the strain-induced transfer term and the pressure term of the perturbed kinetic energy, whereas the flow is stabilized in the far wake as the strain is alleviated. © 2016 Elsevier Ltd. All rights reserved.

Large-eddy simulation of separation and reattachment of a flat plate turbulent boundary layer

Cheng, W.; Pullin, D. I.; Samtaney, Ravi (Journal of Fluid Mechanics, Cambridge University Press (CUP), 2015-11-11) [Article]

© 2015 Cambridge University Press. We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number Reθ based on the momentum boundary-layer thickness θ. Comparison with data from the first case at demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, Reθ, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger Reθ = 11000 of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.

The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.