• Login
    Search 
    •   Home
    • Academic Divisions
    • Physical Sciences & Engineering (PSE)
    • Mechanical Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Physical Sciences & Engineering (PSE)
    • Mechanical Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    Author
    Farooq, Aamir (24)
    Sarathy, Mani (24)Ahmed, Ahfaz (6)Javed, Tamour (6)Mohamed, Samah (6)View MoreDepartment
    Chemical and Biological Engineering Program (24)
    Clean Combustion Research Center (24)Mechanical Engineering Program (24)Physical Sciences and Engineering (PSE) Division (24)Chemical Kinetics & Laser Sensors Laboratory (2)View MoreJournalCombustion and Flame (11)Proceedings of the Combustion Institute (5)Fuel (2)50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (1)Chemical Engineering Research and Design (1)View MoreKAUST Acknowledged Support UnitClean Combustion Research Center (3)Office of Sponsored Research (1)KAUST Grant NumberOSR-2016-CRG5-3022 (1)PublisherElsevier BV (20)American Chemical Society (ACS) (1)American Institute of Aeronautics and Astronautics (AIAA) (1)Figshare (1)Informa UK Limited (1)SubjectShock tube (9)Rapid compression machine (8)Ignition delay (5)Ignition delay times (4)Chemical kinetic modeling (3)View MoreTypeArticle (22)Conference Paper (1)Dataset (1)Year (Issue Date)2019 (1)2018 (3)2017 (7)2016 (7)2015 (4)View MoreItem AvailabilityMetadata Only (11)Open Access (9)Embargoed (4)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-10 of 24

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 24CSV
    • 24RefMan
    • 24EndNote
    • 24BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Chemical kinetic study of triptane (2,2,3-trimethylbutane) as an anti-knock additive

    Atef, Nour; Issayev, Gani; Mohamed, Samah; Najjar, Ahmed; Wang, Zhandong; Wang, Jui-Yang; Farooq, Aamir; Sarathy, Mani (Combustion and Flame, Elsevier BV, 2019-09-19) [Article]
    2,2,3-Trimethylbutane (i.e., triptane) is a potential gasoline octane booster with a research octane number (RON) of 112. Recent studies showed that it can be catalytically produced with high selectivity from methanol (CH3OH) and dimethyl ether (DME), which presents a promising route for utilizing biomass derivatives as transportation fuels. Understanding the ignition properties of triptane at engine relevant conditions is crucial for its further evaluation. In this work, a detailed kinetic model for triptane combustion is developed and validated. The rate rules for the low-temperature oxidation reactions are evaluated based on quantum chemistry calculations from literature, and thermochemical properties of all the species are assessed based on new thermodynamic group values with careful treatment of gauche interactions. In addition, alternative isomerization pathways for peroxy-alkylhydroperoxide species (ȮOQOOH) are incorporated in the model. The model is validated against new ignition delay data from facilities at King Abdullah University of Science and Technology (KAUST): rapid compression machine (RCM) experiments at pressures of 20 and 40 bar, equivalence ratios of 0.5 and 1 and across a temperature range of 620 to 1015 K, and shock tube experiments at 2 and 5 bar, 0.5 and 1 equivalence ratio and over 1000–1400 K. Moreover, the model prediction of various species is compared against species profiles from jet stirred reactor experiments at three equivalence ratios (0.5, 1 and 2) at atmospheric pressure. Finally, triptane is compared with its less branched isomers, n-heptane and 2-methylhexane, to evaluate the effect of branching on fuel reactivity and importance of alternative isomerization pathway.
    Thumbnail

    Three-stage heat release in n-heptane auto-ignition

    Sarathy, Mani; Tingas, Alexandros; Nasir, Ehson Fawad; Detogni, Alberta; Wang, Zhandong; Farooq, Aamir; Im, Hong G. (Proceedings of the Combustion Institute, Elsevier BV, 2018-09-17) [Article]
    Multi-stage heat release is an important feature of hydrocarbon auto-ignition that influences engine operation. This work presents findings of previously unreported three-stage heat release in the auto-ignition of n-heptane/air mixtures at lean equivalence ratios and high pressures. Detailed homogenous gas-phase chemical kinetic simulations were utilized to identify conditions where two-stage and three-stage heat release exist. Temperature and heat release profiles of lean n-heptane/air auto-ignition display three distinct stages of heat release, which is notably different than two-stage heat release typically reported for stoichiometric fuel/air mixtures. Concentration profiles of key radicals (HO2 and OH) and intermediate/product species (CO and CO2) also display unique behavior in the lean auto-ignition case. Rapid compression machine measurements were performed at a lean equivalence ratio to confirm the existence of three-stage heat release in experiments. Laser diagnostic measurements of CO concentrations in the RCM indicate similar concentration-time profiles as those predicted by kinetic modeling. Computational singular perturbation was then used to identify key reactions and species contributing to explosive time scales at various points of the three-stage ignition process. Comparisons with two-stage ignition at stoichiometric conditions indicate that thermal runaway at the second stage of heat release is inhibited under lean conditions. H + O2 chain branching and CO oxidation reactions drive high-temperature heat release under stoichiometric conditions, but these reactions are suppressed by H, OH, and HO2 radical termination reactions at lean conditions, leading to a distinct third stage of heat release.
    Thumbnail

    A minimalist functional group (MFG) approach for surrogate fuel formulation

    Abdul Jameel, Abdul Gani; Naser, Nimal; Issayev, Gani; Touitou, Jamal; Ghosh, Manik Kumer; Emwas, Abdul-Hamid M.; Farooq, Aamir; Dooley, Stephen; Sarathy, Mani (Combustion and Flame, Elsevier BV, 2018-03-20) [Article]
    Surrogate fuel formulation has drawn significant interest due to its relevance towards understanding combustion properties of complex fuel mixtures. In this work, we present a novel approach for surrogate fuel formulation by matching target fuel functional groups, while minimizing the number of surrogate species. Five key functional groups; paraffinic CH, paraffinic CH, paraffinic CH, naphthenic CH–CH and aromatic C–CH groups in addition to structural information provided by the Branching Index (BI) were chosen as matching targets. Surrogates were developed for six FACE (Fuels for Advanced Combustion Engines) gasoline target fuels, namely FACE A, C, F, G, I and J. The five functional groups present in the fuels were qualitatively and quantitatively identified using high resolution H Nuclear Magnetic Resonance (NMR) spectroscopy. A further constraint was imposed in limiting the number of surrogate components to a maximum of two. This simplifies the process of surrogate formulation, facilitates surrogate testing, and significantly reduces the size and time involved in developing chemical kinetic models by reducing the number of thermochemical and kinetic parameters requiring estimation. Fewer species also reduces the computational expenses involved in simulating combustion in practical devices. The proposed surrogate formulation methodology is denoted as the Minimalist Functional Group (MFG) approach. The MFG surrogates were experimentally tested against their target fuels using Ignition Delay Times (IDT) measured in an Ignition Quality Tester (IQT), as specified by the standard ASTM D6890 methodology, and in a Rapid Compression Machine (RCM). Threshold Sooting Index (TSI) and Smoke Point (SP) measurements were also performed to determine the sooting propensities of the surrogates and target fuels. The results showed that MFG surrogates were able to reproduce the aforementioned combustion properties of the target FACE gasolines across a wide range of conditions. The present MFG approach supports existing literature demonstrating that key functional groups are responsible for the occurrence of complex combustion properties. The functional group approach offers a method of understanding the combustion properties of complex mixtures in a manner which is independent, yet complementary, to detailed chemical kinetic models. The MFG approach may be readily extended to formulate surrogates for other complex fuels.
    Thumbnail

    Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    Ahmed, Ahfaz; Hantouche, Mireille; Khurshid, Muneeb; Mohamed, Samah; Nasir, Ehson Fawad; Farooq, Aamir; Roberts, William L.; Knio, Omar; Sarathy, Mani (Fuel, Elsevier BV, 2018-01-30) [Article]
    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of various surrogate fuels and differences in post compression heat loss over low, intermediate and high temperature region.
    Thumbnail

    Recent progress in gasoline surrogate fuels

    Sarathy, Mani; Farooq, Aamir; Kalghatgi, Gautam T. (Progress in Energy and Combustion Science, Elsevier BV, 2017-12-06) [Article]
    Petroleum-derived gasoline is currently the most widely used fuel for transportation propulsion. The design and operation of gasoline fuels is governed by specific physical and chemical kinetic fuel properties. These must be thoroughly understood in order to improve sustainable gasoline fuel technologies in the face of economical, technological, and societal challenges. For this reason, surrogate mixtures are formulated to emulate the thermophysical, thermochemical, and chemical kinetic properties of the real fuel, so that fundamental experiments and predictive simulations can be conducted. Early studies on gasoline combustion typically adopted single component or binary mixtures (n-heptane/isooctane) as surrogates. However, the last decade has seen rapid progress in the formulation and utilization of ternary mixtures (n-heptane/isooctane/toluene), as well as multicomponent mixtures that span the entire carbon number range of gasoline fuels (C4–C10). The increased use of oxygenated fuels (ethanol, butanol, MTBE, etc.) as blending components/additives has also motivated studies on their addition to gasoline fuels. This comprehensive review presents the available experimental and chemical kinetic studies which have been performed to better understand the combustion properties of gasoline fuels and their surrogates. Focus is on the development and use of surrogate fuels that emulate real fuel properties governing the design and operation of engines. A detailed analysis is presented for the various classes of compounds used in formulating gasoline surrogate fuels, including n-paraffins, isoparaffins, olefins, naphthenes, and aromatics. Chemical kinetic models for individual molecules and mixtures of molecules to emulate gasoline surrogate fuels are presented. Despite the recent progress in gasoline surrogate fuel combustion research, there are still major gaps remaining; these are critically discussed, as well as their implications on fuel formulation and engine design.
    Thumbnail

    Autoignition of straight-run naphtha: A promising fuel for advanced compression ignition engines

    AlAbbad, Mohammed A.; Issayev, Gani; Badra, Jihad; Voice, Alexander K.; Giri, Binod; Djebbi, Khalil; Ahmed, Ahfaz; Sarathy, Mani; Farooq, Aamir (Combustion and Flame, Elsevier BV, 2017-11-24) [Article]
    Naphtha, a low-octane distillate fuel, has been proposed as a promising low-cost fuel for advanced compression ignition engine technologies. Experimental and modelling studies have been conducted in this work to assess autoignition characteristics of naphtha for use in advanced engines. Ignition delay times of a certified straight-run naphtha fuel, supplied by Haltermann Solutions, were measured in a shock tube and a rapid comparison machine over wide ranges of experimental conditions (20 and 60 bar, 620–1223 K, ϕ = 0.5, 1 and 2). The Haltermann straight-run naphtha (HSRN) has research octane number (RON) of 60 and motor octane number (MON) of 58.3, with carbon range spanning C3–C9. Reactivity of HSRN was compared, via experiments and simulations, with three suitably formulated surrogates: a two-component PRF (n-heptane/iso-octane) surrogate, a three-component TPRF (toluene/n-heptane/iso-octane) surrogate, and a six-component surrogate. All surrogates reasonably captured the ignition delays of HSRN at high and intermediate temperatures. However, at low temperatures (T < 750 K), the six-component surrogate performed the best in emulating the reactivity of naphtha fuel. Temperature sensitivity and rate of production analyses revealed that the presence of cyclo-alkanes in naphtha inhibits the overall fuel reactivity. Zero-dimensional engine simulations showed that PRF is a good autoignition surrogate for naphtha at high engine loads, however, the six-component surrogate is needed to match the combustion phasing of naphtha at low engine loads.
    Thumbnail

    Autoignition characteristics of oxygenated gasolines

    Lee, Changyoul; Ahmed, Ahfaz; Nasir, Ehson Fawad; Badra, Jihad; Kalghatgi, Gautam; Sarathy, Mani; Curran, Henry J.; Farooq, Aamir (Combustion and Flame, Elsevier BV, 2017-08-14) [Article]
    Gasoline anti-knock quality, defined by the research and motor octane numbers (RON and MON), is important for increasing spark ignition (SI) engine efficiency. Gasoline knock resistance can be increased using a number of blending components. For over two decades, ethanol has become a popular anti-knock blending agent with gasoline fuels due to its production from bio-derived resources. This work explores the oxidation behavior of two oxygenated certification gasoline fuels and the variation of fuel reactivity with molecular composition. Ignition delay times of Haltermann (RON = 91) and Coryton (RON = 97.5) gasolines have been measured in a high-pressure shock tube and in a rapid compression machine at three pressures of 10, 20 and 40 bar, at equivalence ratios of φ = 0.45, 0.9 and 1.8, and in the temperature range of 650–1250 K. The results indicate that the effects of fuel octane number and fuel composition on ignition characteristics are strongest in the intermediate temperature (negative temperature coefficient) region. To simulate the reactivity of these gasolines, three kinds of surrogates, consisting of three, four and eight components, are proposed and compared with the gasoline ignition delay times. It is shown that more complex surrogate mixtures are needed to emulate the reactivity of gasoline with higher octane sensitivity (S = RON–MON). Detailed kinetic analyses are performed to illustrate the dependence of gasoline ignition delay times on fuel composition and, in particular, on ethanol content.
    Thumbnail

    Ignition studies of two low-octane gasolines

    Javed, Tamour; Ahmed, Ahfaz; Lovisotto, Leonardo; Issayev, Gani; Badra, Jihad; Sarathy, Mani; Farooq, Aamir (Combustion and Flame, Elsevier BV, 2017-07-24) [Article]
    Low-octane gasolines (RON ∼ 50–70 range) are prospective fuels for gasoline compression ignition (GCI) internal combustion engines. GCI technology utilizing low-octane fuels has the potential to significantly improve well-to-wheel efficiency and reduce the transportation sector's environmental footprint by offsetting diesel fuel usage in compression ignition engines. In this study, ignition delay times of two low-octane FACE (Fuels for Advanced Combustion Engines) gasolines, FACE I and FACE J, were measured in a shock tube and a rapid compression machine over a broad range of engine-relevant conditions (650–1200 K, 20 and 40 bar and ϕ = 0.5 and 1). The two gasolines are of similar octane ratings with anti-knock index, AKI = (RON + MON)/2, of ∼ 70 and sensitivity, S = RON–MON, of ∼ 3. However, the molecular compositions of the two gasolines are notably different. Experimental ignition delay time results showed that the two gasolines exhibited similar reactivity over a wide range of test conditions. Furthermore, ignition delay times of a primary reference fuel (PRF) surrogate (n-heptane/iso-octane blend), having the same AKI as the FACE gasolines, captured the ignition behavior of these gasolines with some minor discrepancies at low temperatures (T < 700 K). Multi-component surrogates, formulated by matching the octane ratings and compositions of the two gasolines, emulated the autoignition behavior of gasolines from high to low temperatures. Homogeneous charge compression ignition (HCCI) engine simulations were used to show that the PRF and multi-component surrogates exhibited similar combustion phasing over a wide range of engine operating conditions.
    Thumbnail

    Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation

    Rachidi, Mariam El; Mármol, Juan C.; Banyon, Colin; Sajid, Muhammad Bilal; Mehl, Marco; Pitz, William J.; Mohamed, Samah; Alfazazi, Adamu; Lu, Tianfeng; Curran, Henry J.; Farooq, Aamir; Sarathy, Mani (Combustion and Flame, Elsevier BV, 2017-06-12) [Article]
    This study reports cyclopentane ignition delay measurements over a wide range of conditions. The measurements were obtained using two shock tubes and a rapid compression machine, and were used to test a detailed low- and high-temperature mechanism of cyclopentane oxidation that was presented in part I of this study (Al Rashidi et al., 2017). The ignition delay times of cyclopentane/air mixtures were measured over the temperature range of 650–1350K at pressures of 20 and 40atm and equivalence ratios of 0.5, 1.0 and 2.0. The ignition delay times simulated using the detailed chemical kinetic model of cyclopentane oxidation show very good agreement with the experimental measurements, as well as with the cyclopentane ignition and flame speed data available in the literature. The agreement is significantly improved compared to previous models developed and investigated at higher temperatures. Reaction path and sensitivity analyses were performed to provide insights into the ignition-controlling chemistry at low, intermediate and high temperatures. The results obtained in this study confirm that cycloalkanes are less reactive than their non-cyclic counterparts. Moreover, cyclopentane, a high octane number and high octane sensitivity fuel, exhibits minimal low-temperature chemistry and is considerably less reactive than cyclohexane. This study presents the first experimental low-temperature ignition delay data of cyclopentane, a potential fuel-blending component of particular interest due to its desirable antiknock characteristics.
    Thumbnail

    A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics

    Atef, Nour; Kukkadapu, Goutham; Mohamed, Samah; Rashidi, Mariam Al; Banyon, Colin; Mehl, Marco; Heufer, Karl Alexander; Nasir, Ehson Fawad; Alfazazi, Adamu; Das, Apurba K.; Westbrook, Charles K.; Pitz, William J.; Lu, Tianfeng; Farooq, Aamir; Sung, Chih-Jen; Curran, Henry J.; Sarathy, Mani (Combustion and Flame, Elsevier BV, 2017-02-05) [Article]
    Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.
    • 1
    • 2
    • 3
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.