• Login
    Search 
    •   Home
    • Academic Divisions
    • Physical Sciences & Engineering (PSE)
    • Materials Science and Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Physical Sciences & Engineering (PSE)
    • Materials Science and Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorAmassian, Aram (3)Toney, Michael F. (3)Frechet, Jean (2)McGehee, Michael D. (2)Acevedo-Feliz, Daniel (1)View MoreDepartmentKAUST Solar Center (KSC) (4)Materials Science and Engineering Program (4)Physical Sciences and Engineering (PSE) Division (4)Organic Electronics and Photovoltaics Group (3)Chemical Science Program (2)View MoreJournalAdvanced Energy Materials (1)Advanced Materials (1)Journal of the American Chemical Society (1)physica status solidi (RRL) - Rapid Research Letters (1)KAUST Acknowledged Support UnitCenter for Advanced Molecular Photovoltaics (2)Center for Advanced Molecular Photovoltaics (CAMP) (2)Competitive Research Funds (1)Information Technology (1)KAUST Supercomputing Lab and Noor cluster (1)KAUST Grant Number
    KUS-C1-015-21 (4)
    FIC/2010/04 (1)PublisherWiley (3)American Chemical Society (ACS) (1)SubjectConjugated molecules (1)Crystallization (1)molecular mechanics (1)molecular structures (1)nuclear magnetic resonance (1)View MoreTypeArticle (4)Year (Issue Date)
    2012 (4)
    Item AvailabilityMetadata Only (4)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-4 of 4

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 4CSV
    • 4RefMan
    • 4EndNote
    • 4BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Look fast: Crystallization of conjugated molecules during solution shearing probed in-situ and in real time by X-ray scattering

    Smilgies, Detlef Matthias; Li, Ruipeng; Giri, Gaurav; Chou, Kang Wei; Diao, Ying; Bao, Zhenan; Amassian, Aram (physica status solidi (RRL) - Rapid Research Letters, Wiley, 2012-12-20) [Article]
    High-speed solution shearing, in which a drop of dissolved material is spread by a coating knife onto the substrate, has emerged as a versatile, yet simple coating technique to prepare high-mobility organic thin film transistors. Solution shearing and subsequent drying and crystallization of a thin film of conjugated molecules is probed in situ using microbeam grazing incidence wide-angle X-ray scattering (μGIWAXS). We demonstrate the advantages of this approach to study solution based crystal nucleation and growth, and identify casting parameter combinations to cast highly ordered and laterally aligned molecular thin films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Thumbnail

    The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells

    Bartelt, Jonathan A.; Beiley, Zach M.; Hoke, Eric T.; Mateker, William R.; Douglas, Jessica D.; Collins, Brian A.; Tumbleston, John R.; Graham, Kenneth; Amassian, Aram; Ade, Harald W.; Frechet, Jean; Toney, Michael F.; McGehee, Michael D. (Advanced Energy Materials, Wiley, 2012-10-26) [Article]
    Most optimized donor-acceptor (D-A) polymer bulk heterojunction (BHJ) solar cells have active layers too thin to absorb greater than - 80% of incident photons with energies above the polymer's band gap. If the thickness of these devices could be increased without sacrifi cing internal quantum effi ciency, the device power conversion effi ciency (PCE) could be signifi cantly enhanced. We examine the device characteristics of BHJ solar cells based on poly(di(2- ethylhexyloxy)benzo[1,2- b :4,5- b ' ]dithiophene- co -octylthieno[3,4- c ]pyrrole-4,6- dione) (PBDTTPD) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) with 7.3% PCE and fi nd that bimolecular recombination limits the active layer thickness of these devices. Thermal annealing does not mitigate these bimolecular recombination losses and drastically decreases the PCE of PBDTTPD BHJ solar cells. We characterize the morphology of these BHJs before and after thermal annealing and determine that thermal annealing drastically reduces the concentration of PCBM in the mixed regions, which consist of PCBM dispersed in the amorphous portions of PBDTTPD. Decreasing the concentration of PCBM may reduce the number of percolating electron transport pathways within these mixed regions and create morphological electron traps that enhance charge-carrier recombination and limit device quantum effi ciency. These fi ndings suggest that (i) the concentration of PCBM in the mixed regions of polymer BHJs must be above the PCBM percolation threshold in order to attain high solar cell internal quantum effi ciency, and (ii) novel processing techniques, which improve polymer hole mobility while maintaining PCBM percolation within the mixed regions, should be developed in order to limit bimolecular recombination losses in optically thick devices and maximize the PCE of polymer BHJ solar cells. © 2013 WILEY-VCH Verlag GmbH and Co. © 2013 WILEY-VCH Verlag GmbH & Co.
    Thumbnail

    Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal

    Miller, Nichole Cates; Cho, Eunkyung; Junk, Matthias J N; Gysel, Roman; Risko, Chad; Kim, Dongwook; Sweetnam, Sean; Miller, Chad E.; Richter, Lee J.; Kline, Regis Joseph; Heeney, Martin J.; McCulloch, Iain A.; Amassian, Aram; Acevedo-Feliz, Daniel; Knox, Christopher; Hansen, Michael Ryan; Dudenko, Dmytro V.; Chmelka, Bradley F.; Toney, Michael F.; Brédas, Jean Luc; McGehee, Michael D. (Advanced Materials, Wiley, 2012-09-05) [Article]
    The molecular packing in a polymer: fullerene bimolecular crystal is determined using X-ray diffraction (XRD), molecular mechanics (MM) and molecular dynamics (MD) simulations, 2D solid-state NMR spectroscopy, and IR absorption spectroscopy. The conformation of the electron-donating polymer is significantly disrupted by the incorporation of the electron-accepting fullerene molecules, which introduce twists and bends along the polymer backbone and 1D electron-conducting fullerene channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Thumbnail

    Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells

    Yiu, Alan T.; Beaujuge, Pierre; Lee, Olivia P.; Woo, Claire; Toney, Michael F.; Frechet, Jean (Journal of the American Chemical Society, American Chemical Society (ACS), 2012-01-19) [Article]
    The solution-processability of conjugated polymers in organic solvents has classically been achieved by modulating the size and branching of alkyl substituents appended to the backbone. However, these substituents impact structural order and charge transport properties in thin-film devices. As a result, a trade-off must be found between material solubility and insulating alkyl content. It was recently shown that the substitution of furan for thiophene in the backbone of the polymer PDPP2FT significantly improves polymer solubility, allowing for the use of shorter branched side chains while maintaining high device efficiency. In this report, we use PDPP2FT to demonstrate that linear alkyl side chains can be used to promote thin-film nanostructural order. In particular, linear side chains are shown to shorten π-π stacking distances between backbones and increase the correlation lengths of both π-π stacking and lamellar spacing, leading to a substantial increase in the efficiency of bulk heterojunction solar cells. © 2011 American Chemical Society.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.