• Login
    Search 
    •   Home
    • Academic Divisions
    • Physical Sciences & Engineering (PSE)
    • Materials Science and Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Physical Sciences & Engineering (PSE)
    • Materials Science and Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorAlshareef, Husam N. (8)McCulloch, Iain (8)Bakr, Osman (7)Mohammed, Omar F. (7)Anthopoulos, Thomas D. (5)View MoreDepartment
    Chemical Science Program (26)
    Materials Science and Engineering Program (26)Physical Sciences and Engineering (PSE) Division (26)KAUST Solar Center (KSC) (17)KAUST Catalysis Center (KCC) (14)View MoreJournalACS Energy Letters (4)Advanced Functional Materials (3)Advanced Materials (3)Advanced Energy Materials (2)Chemistry of Materials (2)View MoreKAUST Acknowledged Support UnitSupercomputing Laboratory at KAUST (2)CCF (1)Office of Sponsored Research (OSR) (1)KAUST Grant NumberAward No. OSR-2018-CARF/CCF-3079. (1)FCS/1/3321/01 (1)OSR-2015-CRG-2572 (1)OSR-CRG URF/1/3383 (1)OSR-CRG2017-3379 (1)View MorePublisherAmerican Chemical Society (ACS) (13)Wiley (9)Cambridge University Press (CUP) (1)Elsevier BV (1)Royal Society of Chemistry (RSC) (1)View MoreSubjectorganic photovoltaics (3)MoS2 (2)nonfullerene acceptors (2)0D (1)2D transition metal disulfides (1)View MoreTypeArticle (26)Year (Issue Date)2019 (24)2018 (2)Item Availability
    Embargoed (26)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-10 of 26

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 26CSV
    • 26RefMan
    • 26EndNote
    • 26BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries

    Ming, Jun; Cao, Zhen; Wu, Yingqiang; Wahyudi, Wandi; Wang, Wenxi; Guo, Xianrong; Cavallo, Luigi; Hwang, Jang-Yeon; Shamim, Atif; Li, Lain-Jong; Sun, Yang-Kook; Alshareef, Husam N. (ACS Energy Letters, American Chemical Society (ACS), 2019-10-11) [Article]
    Solid electrolyte interphase (SEI)-forming agents such as vinylene carbonate, sulfone, and cyclic sulfate are commonly believed to be film-forming additives in lithium-ion batteries that help to enhance graphite anode stability. However, we find that the film-forming effect and the resultant SEI may not be the only reasons for the enhanced graphite stability. This is because the as-formed SEI cannot inhibit Li+–solvent co-intercalation once the additive is removed from the electrolyte. Instead, we show that the Li+ solvation structure, which is modified by these additives, plays a critical role in achieving reversible Li+ (de)intercalation within graphite. This discovery is confirmed in both carbonate and ether-based electrolytes. We show that the problem of graphite exfoliation caused by Li+–solvent co-intercalation can be mitigated by adding ethene sulfate to tune the Li+ coordination structure. This work brings new insight into the role of additives in electrolytes, expanding the prevailing thinking over the past 2 decades. In addition, this finding can guide the design of more versatile electrolytes for advanced rechargeable metal-ion batteries.
    Thumbnail

    MAPbI3 Single Crystals Free from Hole-Trapping Centers for Enhanced Photodetectivity

    Yang, Chen; El Demellawi, Jehad K.; Yin, Jun; Velusamy, Dhinesh; Emwas, Abdul-Hamid M.; El-Zohry, Ahmed M.; Gereige, Issam; AlSaggaf, Ahmed; Bakr, Osman; Alshareef, Husam N.; Mohammed, Omar F. (ACS Energy Letters, American Chemical Society (ACS), 2019-10-03) [Article]
    Perovskite single crystals (PSCs) are considered the next breakthrough in optoelectronics research due to their free-grain boundary and much lower density of trap states compared to those of their polycrystalline counterparts. However, the inevitable formation of triiodide-based intrinsic defects during high-temperature crystal growth is one of the major challenges impeding the further development of optoelectronic devices based on PSCs. Here, we not only identified the existence of these triiodide ions as hole-trapping centers and their tremendous negative impact on the performance of PSCs, but more importantly, we used a reduction treatment to prevent their formation during crystal growth. The removal of such defect centers resulted in much higher charge carrier mobility and longer carrier lifetime than the untreated counterparts, leading to enhanced photodetection properties. The I3–-free MAPbI3 single crystal (MSC) devices consistently generated a more than 100 times higher photocurrent than that generated by I3–-rich devices under the same light intensity.
    Thumbnail

    17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS2 as a Replacement for PEDOT:PSS

    Lin, Yuanbao; Adilbekova, Begimai; Firdaus, Yuliar; Yengel, Emre; Faber, Hendrik; Sajjad, Muhammad; Zheng, Xiaopeng; Yarali, Emre; Seitkhan, Akmaral; Bakr, Osman; El Labban, Abdulrahman; Schwingenschlögl, Udo; Tung, Vincent; McCulloch, Iain; Laquai, Frédéric; Anthopoulos, Thomas D. (Advanced Materials, Wiley, 2019-09-30) [Article]
    The application of liquid-exfoliated 2D transition metal disulfides (TMDs) as the hole transport layers (HTLs) in nonfullerene-based organic solar cells is reported. It is shown that solution processing of few-layer WS2 or MoS2 suspensions directly onto transparent indium tin oxide (ITO) electrodes changes their work function without the need for any further treatment. HTLs comprising WS2 are found to exhibit higher uniformity on ITO than those of MoS2 and consistently yield solar cells with superior power conversion efficiency (PCE), improved fill factor (FF), enhanced short-circuit current (JSC), and lower series resistance than devices based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and MoS2. Cells based on the ternary bulk-heterojunction PBDB-T-2F:Y6:PC71BM with WS2 as the HTL exhibit the highest PCE of 17%, with an FF of 78%, open-circuit voltage of 0.84 V, and a JSC of 26 mA cm−2. Analysis of the cells' optical and carrier recombination characteristics indicates that the enhanced performance is most likely attributed to a combination of favorable photonic structure and reduced bimolecular recombination losses in WS2-based cells. The achieved PCE is the highest reported to date for organic solar cells comprised of 2D charge transport interlayers and highlights the potential of TMDs as inexpensive HTLs for high-efficiency organic photovoltaics.
    Thumbnail

    Use of the Phen-NaDPO:Sn(SCN) 2 Blend as Electron Transport Layer Results to Consistent Efficiency Improvements in Organic and Hybrid Perovskite Solar Cells

    Seitkhan, Akmaral; Neophytou, Marios; Kirkus, Mindaugas; Abou-Hamad, Edy; Hedhili, Mohamed N.; Yengel, Emre; Firdaus, Yuliar; Faber, Hendrik; Lin, Yuanbao; Tsetseris, Leonidas; McCulloch, Iain; Anthopoulos, Thomas D. (Advanced Functional Materials, Wiley, 2019-09-26) [Article]
    A simple approach that enables a consistent enhancement of the electron extracting properties of the widely used small-molecule Phen-NaDPO and its application in organic solar cells (OSCs) is reported. It is shown that addition of minute amounts of the inorganic molecule Sn(SCN)2 into Phen-NaDPO improves both the electron transport and its film-forming properties. Use of Phen-NaDPO:Sn(SCN)2 blend as the electron transport layer (ETL) in binary PM6:IT-4F OSCs leads to a remarkable increase in the cells' power conversion efficiency (PCE) from 12.6% (Phen-NaDPO) to 13.5% (Phen-NaDPO:Sn(SCN)2). Combining the hybrid ETL with the best-in-class organic ternary PM6:Y6:PC70BM systems results to a similarly remarkable PCE increase from 14.2% (Phen-NaDPO) to 15.6% (Phen-NaDPO:Sn(SCN)2). The consistent PCE enhancement is attributed to reduced trap-assisted carrier recombination at the bulk-heterojunction/ETL interface due to the presence of new energy states formed upon chemical interaction of Phen-NaDPO with Sn(SCN)2. The versatility of this hybrid ETL is further demonstrated with its application in perovskite solar cells for which an increase in the PCE from 16.6% to 18.2% is also demonstrated.
    Thumbnail

    Layer-Dependent Coherent Acoustic Phonons in Two-Dimensional Ruddlesden–Popper Perovskite Crystals

    Maity, Partha; Yin, Jun; Cheng, Bin; He, Jr-Hau; Bakr, Osman; Mohammed, Omar F. (The Journal of Physical Chemistry Letters, American Chemical Society (ACS), 2019-08-26) [Article]
    By combining femtosecond transient reflectance (TR) spectroscopy and density functional theory (DFT) calculations, we reveal the impact of the length of the organic linkers (HOC2H4NH3+ and C6H5C2H4NH3+) and the number of inorganic layers (n = 1–3) on the hot carrier relaxation dynamics and coherent acoustic phonons in 2D Ruddlesden–Popper (RP) perovskites. We find that the interplay between the hot carriers and the coherent longitudinal acoustic phonons (CLAPs) can extend the oscillation of the TR kinetics to nanoseconds, which could lead to the higher thermal conductivities of 2D RP perovskites. Moreover, we find that the frequency of the acoustic phonon oscillation and phonon velocity decreases with the increasing number of layers due to the increased mass of the inorganic layers and reduced electron–phonon coupling. This finding provides new physical insights into how the organic spacers and number of inorganic layers control the overall carrier dynamics of 2D perovskite materials.
    Thumbnail

    Metal Halide Perovskite and Phosphorus Doped g-C3N4 Bulk Heterojunctions for Air-Stable Photodetectors

    Liu, Zhixiong; Zhu, Yunpei; El Demellawi, Jehad K.; Velusamy, Dhinesh; El-Zohry, Ahmed M.; Bakr, Osman; Mohammed, Omar F.; Alshareef, Husam N. (ACS Energy Letters, American Chemical Society (ACS), 2019-08-19) [Article]
    In this work, we fabricate photodetectors made of methylammonium lead trihalide perovskite (MLHP) and phosphorus-doped graphitic carbon nitride nanosheets (PCN-S). Using thermal polymerization, PCN-S with a reduced band gap, are synthesized from low-cost precursors, making it feasible to form type-II bulk heterojunctions with perovskites. Owing to the bulk heterojunctions between PCN-S and MLHP, the dark current of the photodetectors significantly decreases from ∼10-9 A for perovskite-only devices to ∼10-11 A for heterojunction devices. As a result, not only does the on/off ratio of the hybrid devices increase from 103 to 105 but also the photodetectivity is enhanced by more than 1 order of magnitude (up to 1013 Jones) and the responsivity reaches a value of 14 A W-1. Moreover, the hybridization of MLHP with PCN-S significantly modifies the hydrophilicity and morphology of the perovskite films, which dramatically increases their stability under ambient conditions. The hybrid photodetectors, described here, present a promising new direction toward stable and efficient optoelectronic applications.
    Thumbnail

    On the Role of Contact Resistance and Electrode Modification in Organic Electrochemical Transistors

    Paterson, Alexandra; Faber, Hendrik; Savva, Achilleas; Nikiforidis, Georgios; Gedda, Murali; Hidalgo, Tania C.; Chen, Xingxing; McCulloch, Iain; Anthopoulos, Thomas D.; Inal, Sahika (Advanced Materials, Wiley, 2019-07-25) [Article]
    Contact resistance is renowned for its unfavorable impact on transistor performance. Despite its notoriety, the nature of contact resistance in organic electrochemical transistors (OECTs) remains unclear. Here, by investigating the role of contact resistance in n-type OECTs, the first demonstration of source/drain-electrode surface modification for achieving state-of-the-art n-type OECTs is reported. Specifically, thiol-based self-assembled monolayers (SAMs), 4-methylbenzenethiol (MBT) and pentafluorobenzenethiol (PFBT), are used to investigate contact resistance in n-type accumulation-mode OECTs made from the hydrophilic copolymer P-90, where the deliberate functionalization of the gold source/drain electrodes decreases and increases the energetic mismatch at the electrode/semiconductor interface, respectively. Although MBT treatment is found to increase the transconductance three-fold, contact resistance is not found to be the dominant factor governing OECT performance. Additional morphology and surface energy investigations show that increased performance comes from SAM-enhanced source/drain electrode surface energy, which improves wetting, semiconductor/metal interface quality, and semiconductor morphology at the electrode and channel. Overall, contact resistance in n-type OECTs is investigated, whilst identifying source/drain electrode treatment as a useful device engineering strategy for achieving state of the art n-type OECTs.
    Thumbnail

    Impact of Nonfullerene Acceptor Side Chain Variation on Transistor Mobility

    Bristow, Helen; Thorley, Karl J.; White, Andrew J. P.; Wadsworth, Andrew; Babics, Maxime; Hamid, Zeinab; Zhang, Weimin; Paterson, Alexandra; Kosco, Jan; Panidi, Julianna; Anthopoulos, Thomas D.; McCulloch, Iain (Advanced Electronic Materials, Wiley, 2019-07-23) [Article]
    Organic photovoltaic power conversion efficiencies exceeding 14% can largely be attributed to the development of nonfullerene acceptors (NFAs). Many of these molecules are structural derivatives of IDTBR and ITIC, two common NFAs. By modifying the chemical structure of the acceptor, the optical absorption, energy levels, and bulk heterojunction morphology can be tuned. However, the effect of structural modifications on NFA charge transport properties has not yet been fully explored. In this work, the relationship between chemical structure, molecular packing, and charge transport, as measured in organic thin-film transistors (OTFTs), is investigated for two high performance NFAs, namely O-IDTBR and ITIC, along with their structural derivatives EH-IDTBR and ITIC-Th. O-IDTBR exhibits a higher n-type saturation field effect mobility of 0.12 cm2 V−1 s−1 compared with the other acceptors investigated. This can be attributed to the linear side chains of O-IDTBR which direct an interdigitated columnar packing motif. The study provides insight into the transport properties and molecular packing of NFAs, thereby contributing to understanding the relationship between chemical structure, material properties, and device performance for these materials. The high electron mobility achieved by O-IDTBR also suggests its applications can be extended to use as an n-type semiconductor in OTFTs.
    Thumbnail

    Polysilicon Passivating Contacts for Silicon Solar Cells: Interface Passivation and Carrier Transport Mechanism

    Liu, Wenzhu; Yang, Xinbo; Kang, Jingxuan; Li, Shuai; Xu, Lujia; Zhang, Song; Xu, Hang; Peng, Jun; Xie, Feng; Fu, Jui-Han; Wang, Kai; Liu, Jiang; Alzahrani, Areej A.; De Wolf, Stefaan (ACS Applied Energy Materials, American Chemical Society (ACS), 2019-07-05) [Article]
    Polysilicon passivating contacts, consisting of a stack of tunnel-oxide and doped polysilicon layers, can simultaneously provide excellent surface passivation and low contact resistivity for silicon solar cells. Nevertheless, the microscopic interfacial characteristics of such contacts are not yet fully understood. In this work, by investigating the surface passivation evolution of polysilicon passivating contacts under increasing annealing temperatures, we unveil these characteristics. Before annealing, we find that the Si and O atoms within the tunnel-oxide layer are mostly unsaturated, whereas the O atoms introduce acceptor-like defects. These defects cause Fermi-level pinning and high carrier recombination. During annealing, we identify two distinct chemical passivation regimes driven by surface hydrogenation and oxidation. We attribute the excellent chemical passivation activated by high-temperature annealing (∼850 °C) mainly to the tunnel oxide reconstruction, which effectively reduces the acceptor-like state density. During the oxide reconstruction, we also find that subnanometer pits (rather than pinholes) are formed in the oxide. A combination of experimental and theoretical investigations demonstrates these subnanometer pits provide excellent surface passivation and efficient tunneling for majority carriers.
    Thumbnail

    MXenes for Plasmonic Photodetection

    Velusamy, Dhinesh; El Demellawi, Jehad K.; El-Zohry, Ahmed; Giugni, Andrea; Lopatin, Sergei; Hedhili, Mohamed N.; Mansour, Ahmed; Di Fabrizio, Enzo M.; Mohammed, Omar F.; Alshareef, Husam N. (Advanced Materials, Wiley, 2019-06-20) [Article]
    MXenes have recently shown impressive optical and plasmonic properties associated with their ultrathin-atomic-layer structure. However, their potential use in photonic and plasmonic devices has been only marginally explored. Photodetectors made of five different MXenes are fabricated, among which molybdenum carbide MXene (Mo2CTx) exhibits the best performance. Mo2CTx MXene thin films deposited on paper substrates exhibit broad photoresponse in the range of 400–800 nm with high responsivity (up to 9 A W−1), detectivity (≈5 × 1011 Jones), and reliable photoswitching characteristics at a wavelength of 660 nm. Spatially resolved electron energy-loss spectroscopy and ultrafast femtosecond transient absorption spectroscopy of the MXene nanosheets reveal that the photoresponse of Mo2CTx is strongly dependent on its surface plasmon-assisted hot carriers. Additionally, Mo2CTx thin-film devices are shown to be relatively stable under ambient conditions, continuous illumination and mechanical stresses, illustrating their durable photodetection operation in the visible spectral range. Micro-Raman spectroscopy conducted on bare Mo2CTx film and on gold electrodes allowing for surface-enhanced Raman scattering demonstrates surface chemistry and a specific low-frequency band that is related to the vibrational modes of the single nanosheets. The specific ability to detect and excite individual surface plasmon modes provides a viable platform for various MXene-based optoelectronic applications.
    • 1
    • 2
    • 3
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.