• Login
    Search 
    •   Home
    • Academic Divisions
    • Physical Sciences & Engineering (PSE)
    • Materials Science and Engineering Program
    • Search
    •   Home
    • Academic Divisions
    • Physical Sciences & Engineering (PSE)
    • Materials Science and Engineering Program
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    Author
    Anthopoulos, Thomas D. (1)
    Fei, Zhuping (1)
    Heeney, Martin (1)Isakov, Ivan (1)Li, Jun (1)View MoreDepartmentImaging and Characterization Core Lab (1)
    Materials Science and Engineering Program (1)
    Nanofabrication Core Lab (1)
    Physical Sciences and Engineering (PSE) Division (1)
    Thin Films & Characterization (1)Journal
    Applied Physics Letters (1)
    Publisher
    AIP Publishing (1)
    TypeArticle (1)Year (Issue Date)2016 (1)Item AvailabilityOpen Access (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Hybrid complementary circuits based on p-channel organic and n-channel metal oxide transistors with balanced carrier mobilities of up to 10 cm2/Vs

    Isakov, Ivan; Paterson, Alexandra F.; Solomeshch, Olga; Tessler, Nir; Zhang, Qiang; Li, Jun; Zhang, Xixiang; Fei, Zhuping; Heeney, Martin; Anthopoulos, Thomas D. (Applied Physics Letters, AIP Publishing, 2016-12-29) [Article]
    We report the development of hybrid complementary inverters based on p-channel organic and n-channel metal oxide thin-film transistors (TFTs) both processed from solution at <200 °C. For the organic TFTs, a ternary blend consisting of the small-molecule 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene, the polymer indacenodithiophene-benzothiadiazole (CIDT-BT) and the p-type dopant CF was employed, whereas the isotype InO/ZnO heterojunction was used for the n-channel TFTs. When integrated on the same substrate, p- and n-channel devices exhibited balanced carrier mobilities up to 10 cm/Vs. Hybrid complementary inverters based on these devices show high signal gain (>30 V/V) and wide noise margins (70%). The moderate processing temperatures employed and the achieved level of device performance highlight the tremendous potential of the technology for application in the emerging sector of large-area microelectronics.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.