• Interface Effects Enabling New Applications of Two-Dimensional Materials

      Sattar, Shahid (2018-05) [Dissertation]
      Advisor: Schwingenschlögl, Udo
      Committee members: Alshareef, Husam N.; Hussain, Muhammad Mustafa; Chroneos, Alexander
      Interface effects in two-dimensional (2D) materials play a critical role for the electronic properties and device characteristics. Here we use first-principles calculations to investigate interface effects in 2D materials enabling new applications. We first show that graphene in contact with monolayer and bilayer PtSe2 experiences weak van der Waals interaction. Analysis of the work functions and band bending at the interface reveals that graphene forms an n-type Schottky contact with monolayer PtSe2 and a p-type Schottky contact with bilayer PtSe2, whereas a small biaxial tensile strain makes the contact Ohmic in the latter case as required for transistor operation. For silicene, which is a 2D Dirac relative of graphene, structural buckling complicates the experimental synthesis and strong interaction with the substrate perturbs the characteristic linear dispersion. To remove this obstacle, we propose solid argon as a possible substrate for realizing quasi-freestanding silicene and argue that a weak van der Waals interaction and small binding energy indicate the possibility to separate silicene from the substrate. For the silicene-PtSe2 interface, we demonstrate much stronger interlayer interaction than previously reported for silicene on other semiconducting substrates. Due to the inversion symmetry breaking and proximity to PtSe2, a band gap opening and spin splittings in the valence and conduction bands of silicene are observed. It is also shown that the strong interlayer interaction can be effectively reduced by intercalating NH3 molecules between silicene and PtSe2, and a small NH3 discussion barrier makes intercalation a viable experimental approach. Silicene/germanene are categorized as key materials for the field of valleytronics due to stronger spin-orbit coupling as compared to graphene. However, no viable route exists so far to experimental realization. We propose F-doped WS2 as substrate that avoids detrimental effects and at the same time induces the required valley polarization. The behavior is explained by proximity effects on silicene/germanene due to the underlying substrate. Broken inversion symmetry in the presence of WS2 opens a substantial band gap in silicene/germanene. F doping of WS2 results in spin polarization, which, in conjunction with proximity-enhanced spin orbit coupling, creates sizable spin-valley polarization. For heterostructures of silicene and hexagonal boron nitride, we show that the stacking is fundamental for the details of the dispersion relation in the vicinity of the Fermi energy (gapped, non-gapped, linear, parabolic) despite small differences in the total energy. We also demonstrate that the tightbinding model of bilayer graphene is able to capture most of these features and we identify the limitations of the model.
    • Strong Exciton–Photon Coupling and Lasing Behavior in All-Inorganic CsPbBr3 Micro/Nanowire Fabry-Pérot Cavity

      Du, Wenna; Zhang, Shuai; Shi, Jia; Chen, Jie; Wu, Zhiyong; Mi, Yang; Liu, Zhixiong; Li, Yuanzheng; Sui, Xinyu; Wang, Rui; Qiu, Xiaohui; Wu, Tao; Xiao, Yunfeng; Zhang, Qing; Liu, Xinfeng (ACS Photonics, American Chemical Society (ACS), 2018-03-14) [Article]
      All-inorganic perovskite micro/nanowire materials hold great promises as nanoscale coherent light source due to their superior optical and electronic properties. The coupling strength between exciton and photon in this system is important for their optical application, however, is rarely studied. In this work, we demonstrated the strong coupling of exciton-photon and polariton lasing in high quality CsPbBr micro/nanowires synthesized by a CVD method. By exploring spatial resolved PL spectra of CsPbBr cavity, we observed mode volume dependent coupling strength with a vacuum Rabi splitting up to 656 meV, as well as significant increase in group index. Moreover, low threshold polariton lasing was achieved at room temperature within strong coupling regime; the polariton characteristic is confirmed by comparing lasing spectra with waveguided output spectra and the dramatically reduced lasing threshold. Our present results provide new avenues to achieve high coupling strengths potentially enabling application of exciting phenomena such as Bose-Einstein condensation of polaritons, efficient light-emitting diodes, and lasers.
    • Carrier dynamics of InxGa1-xN/GaN multiple quantum wells grown on (−201) β-Ga2O3 for bright vertical light emitting diodes

      Mumthaz Muhammed, Mufasila; Xu, Jian; Wehbe, Nimer; Roqan, Iman S. (Optics Express, The Optical Society, 2018-05-30) [Article]
      High-quality InxGa1-xN/GaN multi-quantum well (MQW) structures (0.05≤x≤0.13), are successfully grown on transparent and conductive (−201)-oriented β-Ga2O3 substrate. Scanning-transmission electron microscopy and secondary ion mass spectrometry (SIMS) show well-defined high quality MQWs, while the In and Ga compositions in the wells and the barriers are estimated by SIMS. Temperature-dependant Photoluminescence (PL) confirms high optical quality with a strong bandedge emission and negligble yellow band. time-resolved PL measurements (via above/below-GaN bandgap excitations) explain carrier dynamics, showing that the radiative recombination is predominant. Our results demonstrate that (−201)-oriented β-Ga2O3 is a strong candidate as a substrate for III-nitride-based vertical- emitting devices.
    • Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers

      Hsu, Wei-Ting; Lu, Li-Syuan; Wu, Po-Hsun; Lee, Ming-Hao; Chen, Peng-Jen; Wu, Pei-Ying; Chou, Yi-Chia; Jeng, Horng-Tay; Li, Lain-Jong; Chu, Ming-Wen; Chang, Wen-Hao (Nature Communications, Springer Nature, 2018-04-11) [Article]
      Van der Waals heterobilayers of transition metal dichalcogenides with spin-valley coupling of carriers in different layers have emerged as a new platform for exploring spin/valleytronic applications. The interlayer coupling was predicted to exhibit subtle changes with the interlayer atomic registry. Manually stacked heterobilayers, however, are incommensurate with the inevitable interlayer twist and/or lattice mismatch, where the properties associated with atomic registry are difficult to access by optical means. Here, we unveil the distinct polarization properties of valley-specific interlayer excitons using epitaxially grown, commensurate WSe/MoSe heterobilayers with well-defined (AA and AB) atomic registry. We observe circularly polarized photoluminescence from interlayer excitons, but with a helicity opposite to the optical excitation. The negative circular polarization arises from the quantum interference imposed by interlayer atomic registry, giving rise to distinct polarization selection rules for interlayer excitons. Using selective excitation schemes, we demonstrate the optical addressability for interlayer excitons with different valley configurations and polarization helicities.
    • Analysis on the energetics, magnetism and electronic properties in a 45° ZnO grain boundary doped with Gd

      Devi, Assa Aravindh Sasikala; Roqan, Iman S. (RSC Advances, Royal Society of Chemistry (RSC), 2018-04-13) [Article]
      The structural stability and magnetic properties of a grain boundary (GB) formed by aligning two ZnO single crystals oriented at an angle of 45° is investigated by density functional theory, using generalized gradient approximation (GGA) and taking the U parameter into consideration for the 4f impurity states. We found that the GB is stable with no dangling bonds and inter-granular structures. The stability of defects such as Gd substituted to the Zn site (Gd), Zn vacancy (V) and O vacancy (V) as well as defect complexes Gd-Gd, Gd-V, and Gd-V are analyzed using formation energy calculations. It is found that Gd-Gd clusters prefers to form at the GB. The spin polarization at the Gd sites is too localized and the exchange coupling energy is insufficient to overcome the thermal fluctuations. However, we show that the presence of V increases the hybridization between p orbitals of O as well as d orbitals of Zn, which can assist in increasing the magnetic polarization of the system. This work advances the understanding of the ferromagnetism in Gd-doped ZnO, indicating that Gd clustering at the GB is not likely to contribute to the ferromagnetism.
    • Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination

      Baran, Derya; Gasparini, Nicola; Wadsworth, Andrew; Tan, Ching Hong; Wehbe, Nimer; Song, Xin; Hamid, Zeinab; Zhang, Weimin; Neophytou, Marios; Kirchartz, Thomas; Brabec, Christoph J.; Durrant, James R.; McCulloch, Iain (Nature Communications, Springer Nature, 2018-05-21) [Article]
      Nonfullerene solar cells have increased their efficiencies up to 13%, yet quantum efficiencies are still limited to 80%. Here we report efficient nonfullerene solar cells with quantum efficiencies approaching unity. This is achieved with overlapping absorption bands of donor and acceptor that increases the photon absorption strength in the range from about 570 to 700 nm, thus, almost all incident photons are absorbed in the active layer. The charges generated are found to dissociate with negligible geminate recombination losses resulting in a short-circuit current density of 20 mA cm-2 along with open-circuit voltages >1 V, which is remarkable for a 1.6 eV bandgap system. Most importantly, the unique nano-morphology of the donor:acceptor blend results in a substantially improved stability under illumination. Understanding the efficient charge separation in nonfullerene acceptors can pave the way to robust and recombination-free organic solar cells.
    • Quantification of Ionic Diffusion in Lead Halide Perovskite Single Crystals

      Peng, Wei; Aranda, Clara; Bakr, Osman; Garcia-Belmonte, Germà; Bisquert, Juan; Guerrero, Antonio (ACS Energy Letters, American Chemical Society (ACS), 2018-05-25) [Article]
      Lead halide perovskites are mixed electronic/ionic semiconductors that have recently revolutionized the photovoltaics field. The physical characterization of the ionic conductivity has been rather elusive due to the highly intermixing of ionic and electronic current. In this work the synthesis of low defect density monocrystalline MAPbBr3 (MA=Methyl ammonium) solar cells free of hole transport layer (HTL) suppresses the effect of electronic current. Impedance spectroscopy reveals the characteristic signature of ionic diffusion (the Warburg element and transmission line equivalent circuit) and ion accumulation at the MAPbBr3/Au interface. Diffusion coefficients are calculated based on a good correlation between thickness of MAPbBr3 and characteristic diffusion transition frequency. In addition, reactive external interfaces are studied by comparison of polycrystalline MAPbBr3 devices prepared either with or without a HTL. The low frequency response in IS measurements is correlated with the chemical reactivity of moving ions with the external interfaces and diffusion into the HTL.
    • Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides

      Dursun, Ibrahim; Zheng, Yangzi; Guo, Tianle; de Bastiani, Michele; Turedi, Bekir; Sinatra, Lutfan; Haque, Mohammed; Sun, Bin; Zhumekenov, Ayan A.; Saidaminov, Makhsud I.; Garcia de Arquer, F. Pelayo; Sargent, Edward H.; Wu, Tao; Gartstein, Yuri N; Bakr, Osman; Mohammed, Omar F.; Malko, Anton V. (ACS Energy Letters, American Chemical Society (ACS), 2018-05-26) [Article]
      Cesium lead halide perovskite materials have attracted considerable attention for potential applications in lasers, light emitting diodes and photodetectors. Here, we provide the experimental and theoretical evidence for photon recycling in CsPbBr3 perovskite microwires. Using two-photon excitation, we recorded photoluminescence (PL) lifetimes and emission spectra as a function of the lateral distance between PL excitation and collection positions along the microwire, with separations exceeding 100 µm. At longer separations, the PL spectrum develops a red-shifted emission peak accompanied by an appearance of well-resolved rise times in the PL kinetics. We developed quantitative modeling that accounts for bimolecular recombination and photon recycling within the microwire waveguide and is sufficient to account for the observed decay modifications. It relies on a high radiative efficiency in CsPbBr3 perovskite microwires and provides crucial information about the potential impact of photon recycling and waveguide trapping on optoelectronic properties of cesium lead halide perovskite materials.
    • Inherent Electrochemistry and Charge Transfer Properties of Few-Layer Two Dimensional Ti3C2Tx MXene

      Nayak, Pranati; Jiang, Qiu; Mohanraman, Rajeshkumar; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N. (Nanoscale, Royal Society of Chemistry (RSC), 2018-05-25) [Article]
      We report the effect of Ti3C2Tx MXene flake thickness on its inherent electrochemistry and heterogeneous charge transfer characteristics. It is shown that the Ti3C2Tx undergoes irreversible oxidation in the positive potential window, which strongly depends on the flake thickness and pH of the electrolyte. Few-layer Ti3C2Tx exhibits faster electron transfer kinetics (k0=0.09533 cm/s) with Fe(CN)64−/3− redox mediator compared to multi-layer Ti3C2Tx (k0= 0.00503 cm/s). In addition, few-layer free standing Ti3C2Tx film electrode remains intact after enduring irreversible oxidation.
    • Efficiency-limiting processes in OPV bulk heterojunctions of GeNIDTBT and IDT-based acceptors

      Al-Saggaf, Sarah M. (2018-05-16) [Thesis]
      Advisor: Laquai, Frédéric
      Committee members: Baran, Derya; Inal, Sahika
      The successful realization of highly efficient bulk heterojunction OPV devices requires the development of organic donor and acceptor materials with tailored properties. Recently, non-fullerene acceptors (NFAs) have emerged as an alternative to the ubiquitously used fullerene derivatives. NFAs showed a rapid increase in efficiencies, now exceeding a PCE of 13%. In my thesis research, I used two small molecule IDT-based acceptors, namely O-IDTBR and O-IDTBCN, in combination with a wide bandgap donor polymer, GeNIDT-BT, as active material in BHJ solar cells and investigated their photophysical characteristics. The polymer combined with O-IDTBR as acceptor achieved a power conversion efficiency of only 2%, which is significantly lower than that obtained for the system of GeNIDT-BT: O-IDTBCN (5.3%). Using nano- to microsecond transient absorption spectroscopy, I investigated both systems and demonstrated that GeNIDT-BT:O-IDTBR exhibits more geminate recombination of interfacial charge-transfer states, leading to lower short circuit currents. Using time-delayed collection field experiments, I studied the field dependence of charge generation and its impact on the device fill factor. Overall, my results provide a qualitative understanding of the efficiency-limiting processes in both systems and their impact on device performance.
    • Optical and Temporal Carrier Dynamics Investigations of III-Nitrides for Semiconductor Lighting

      Ajia, Idris A. (2018-05-22) [Dissertation]
      Advisor: Roqan, Iman S.
      Committee members: Di Fabrizio, Enzo M.; Li, Xiaohang; Lorenz, Katharina
      III-nitride semiconductors suffer significant efficiency limitations; ‘efficiency’ being an umbrella term that covers an extensive list of challenges that must be overcome if they are to fulfil their vast potential. To this end, it is imperative to understand the underlying phenomena behind such limitations. In this dissertation, I combine powerful optical and structural characterization techniques to investigate the effect of different defects on the carrier dynamics in III-nitride materials for light emitting devices. The results presented herein will enhance the current understanding of the carrier mechanisms in such devices, which will lead to device efficiency improvements. In the first part of this dissertation, the effects of some important types of crystal defects present in III-nitride structures are investigated. Here, two types of defects are studied in two different III-nitride-based light emitting structures. The first defects of interest are V-pit defects in InGaN/GaN multiple quantum well (MQW) blue LEDs, where their contribution to the high-efficiency of such LEDs is discussed. In addition, the effect of these defects on the efficiency droop phenomenon in these LEDs is elucidated. Secondly, the optical effects of grain boundary defects in AlN-rich AlGaN/AlGaN MQWs is studied. In this study, it is shown that grain boundary defects may result in abnormal carrier localization behavior in these deep ultraviolet (UV) structures. While both defects are treated individually, it is evident from these studies that threading dislocation (TD) defects are an underlying contributor to the more undesirable outcomes of the said defects. In the second part, the dissertation reports on the carrier dynamics of III-nitride LED structures grown on emerging substrates—as possible efficiency enhancing techniques—aimed at mitigating the effects of TD defects. Thus, the carrier dynamics of GaN/AlGaN UV MQWs grown, for the first time, on (2̅01) – oriented β-Ga2O3 is studied. It is shown to be a candidate substrate for highly efficient vertical UV devices. Finally, results from the carrier dynamics investigation of an AlGaN/AlGaN MQW LED structure homoepitaxially grown on AlN substrate are discussed, where it is shown that its high-efficiency is sustained at high temperatures through the thermal redistribution of carriers to highly efficient recombination sites.
    • Plasmonic Nanowires for Wide Wavelength Range Molecular Sensing

      Marinaro, Giovanni; Das, Gobind; Giugni, Andrea; Allione, Marco; Torre, Bruno; Candeloro, Patrizio; Kosel, Jürgen; Di Fabrizio, Enzo M. (Materials, MDPI AG, 2018-05-17) [Article]
      In this paper, we propose the use of a standing nanowires array, constituted by plasmonic active gold wires grown on iron disks, and partially immersed in a supporting alumina matrix, for surface-enhanced Raman spectroscopy applications. The galvanic process was used to fabricate nanowires in pores of anodized alumina template, making this device cost-effective. This fabrication method allows for the selection of size, diameter, and spatial arrangement of nanowires. The proposed device, thanks to a detailed design analysis, demonstrates a broadband plasmonic enhancement effect useful for many standard excitation wavelengths in the visible and NIR. The trigonal pores arrangement gives an efficiency weakly dependent on polarization. The devices, tested with 633 and 830 nm laser lines, show a significant Raman enhancement factor, up to around 6 × 10⁴, with respect to the flat gold surface, used as a reference for the measurements of the investigated molecules.
    • Molecular dynamics of Middle East Respiratory Syndrome Coronavirus (MERS CoV) fusion heptad repeat trimers

      Kandeel, Mahmoud; Al-Taher, Abdulla; Li, Huifang; Schwingenschlögl, Udo; Alnazawi, Mohamed (Computational Biology and Chemistry, Elsevier BV, 2018-05-17) [Article]
      Structural studies related to Middle East Respiratory Syndrome Coronavirus (MERS CoV) infection process are so limited. In this study, molecular dynamics (MD) simulation was carried out to unravel changes in the MERS CoV heptad repeat domains (HRs) and factors affecting fusion state HR stability. Results indicated that HR trimer is more rapidly stabilized, having stable system energy and lowest root mean square deviations (RMSDs). While trimers were the predominant active form of CoVs HR, monomers were also discovered in both of viral and cellular membranes. In order to find the differences between S2 monomer and trimer molecular dynamics, S2 monomer were modelled and subjected to MD simulation. In contrast to S2 trimer, S2 monomer was unstable, having high RMSDs with major drifts above 8 Å. Fluctuation of HR residue positions revealed major changes in the C-terminal of HR2 and the linker coil between HR1 and HR2 in both monomer and trimer. Hydrophobic residues at the “a” and “d” positions of HR helices stabilize the whole system, having minimal changes in RMSD. The global distance test and contact area difference scores support instability of MERS CoV S2 monomer. Analysis of HR1-HR2 inter-residue contacts and interaction energy revealed three different energy scales along HR helices. Two strong interaction energies were identified at the start of the HR2 helix and at the C-terminal of HR2. The identified critical residues by MD simulation and residues at a and d position of HR helix were strong stabilizers of HRs recognition.
    • Using Mosaicity to Tune Thermal Transport in Polycrystalline AlN Thin Films

      Singh, Shivkant; Shervin, Shahab; Sun, Haiding; Yarali, Milad; Chen, Jie; Lin, Ronghui; Li, Kuang-Hui; Li, Xiaohang; Ryou, Jae-Hyun; Mavrokefalos, Anastassios (ACS Applied Materials & Interfaces, American Chemical Society (ACS), 2018-05-17) [Article]
      The effect of controlling the c-axis alignment (mosaicity) to the cross-plane thermal transport in textured polycrystalline aluminum nitride (AlN) thin films is experimentally and theoretically investigated. We show that by controlling the sputtering conditions we are able to deposit AlN thin films with varying c-axis grain tilt (mosaicity) from 10° to 0°. Microstructural characterization shows that the films are nearly identical in thickness and grain size, and the difference in mosaicity alters the grain interface quality. This has a significant effect to thermal transport where a thermal conductivity of 4.22 W/mK vs. 8.09 W/mK are measured for samples with tilt angles of 10° vs. 0° respectively. The modified Callaway model was used to fit the theoretical curves to the experimental results using various phonon scattering mechanisms at the grain interface. It was found that using a non-gray model gives an overview of the phonon scattering at the grain boundaries, whereas treating the grain boundary as an array of dislocation lines with varying angle relative to the heat flow, best describes the mechanism of the thermal transport. Lastly, our results show that controlling the quality of the grain interface provides a tuning knob to control thermal transport in polycrystalline materials.
    • Efficient Long - Range Electron Transfer Processes in Polyfluorene – Perylene Diimide Blends

      Isakova, Anna; Karuthedath, Safakath; Arnold, Thomas; Howse, Jonathan; Topham, Paul D.; Toolan, Daniel Thomas William; Laquai, Frédéric; Lüer, Larry (Nanoscale, Royal Society of Chemistry (RSC), 2018-05-17) [Article]
      In bulk heterojunction donor-acceptor (D-A) blends, high photovoltaic yields require charge carrier separation to outcompete geminate recombination. Recently, evidence for long-range electron transfer mechanisms has been presented, avoiding strongly-bound interfacial charge transfer (CT) states. However, due to the lack of specific optical probes at the D-A interface, a detailed quantification of the long-range processes has not been feasible, until now. Here, we present a transient absorption study of long-range processes in a unique phase consisting of perylene diimide (PDI) crystals intercalated with polyfluorene (PFO), as widely used non-fullerene electron acceptor and donor, respectively. The intercalated PDI:PFO phase possesses specific well-separated spectral features for the excited states at the D-A interface. By use of femtosecond spectroscopy we reveal the excitation dynamics in this blend. PDI excitons undergo a clear symmetry-breaking charge separation in the PDI bulk, which occurs within several hundred femtoseconds, thus outcompeting excimer formation, known to limit charge separation yields when PDI is used as an acceptor. In contrast, PFO excitons are dissociated with very high yields in a one-step long-range process, enabled by large delocalization of the PFO exciton wavefunction. Moreover, both scenarios circumvent the formation of strongly-bound interfacial CT states and enable a targeted interfacial design for bulk heterojunction blends with near unity charge separation yields.
    • Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals

      Frohna, Kyle; Deshpande, Tejas; Harter, John; Peng, Wei; Barker, Bradford A.; Neaton, Jeffrey B.; Louie, Steven G.; Bakr, Osman; Hsieh, David; Bernardi, Marco (Nature Communications, Springer Nature, 2018-05-02) [Article]
      Methylammonium lead iodide perovskite (MAPbI3) exhibits long charge carrier lifetimes that are linked to its high efficiency in solar cells. Yet, the mechanisms governing these unusual carrier dynamics are not completely understood. A leading hypothesis-disproved in this work-is that a large, static bulk Rashba effect slows down carrier recombination. Here, using second harmonic generation rotational anisotropy measurements on MAPbI3 crystals, we demonstrate that the bulk structure of tetragonal MAPbI3 is centrosymmetric with I4/mcm space group. Our calculations show that a significant Rashba splitting in the bandstructure requires a non-centrosymmetric lead iodide framework, and that incorrect structural relaxations are responsible for the previously predicted large Rashba effect. The small Rashba splitting allows us to compute effective masses in excellent agreement with experiment. Our findings rule out the presence of a large static Rashba effect in bulk MAPbI3, and our measurements find no evidence of dynamic Rashba effects.
    • Atomic-Layer-Deposited AZO Outperforms ITO in High-Efficiency Polymer Solar Cells

      Kan, Zhipeng; Wang, Zhenwei; Firdaus, Yuliar; Babics, Maxime; Alshareef, Husam N.; Beaujuge, Pierre (Journal of Materials Chemistry A, Royal Society of Chemistry (RSC), 2018-05-11) [Article]
      Tin-doped indium oxide (ITO) transparent conducting electrodes are widely used across the display industry, and are currently the cornerstone of photovoltaic device developments, taking a substantial share in the manufacturing cost of large-area modules. However, cost and supply considerations are set to limit the extensive use of indium for optoelectronic device applications and, in turn, alternative transparent conducting oxide (TCO) materials are required. In this report, we show that aluminum-doped zinc oxide (AZO) thin films grown by atomic layer deposition (ALD) are sufficiently conductive and transparent to outperform ITO as the cathode in inverted polymer solar cells. Reference polymer solar cells made with atomic-layer-deposited AZO cathodes, PCE10 as the polymer donor and PC71BM as the fullerene acceptor (model systems), reach power conversion efficiencies of ca. 10% (compared to ca. 9% with ITO-coated glass), without compromising other figures of merit. These ALD-grown AZO electrodes are promising for a wide range of optoelectronic device applications relying on TCOs.
    • Solution-Processed Molecular Organic Solar cell: Relationship between Morphology and Device Performance

      Babics, Maxime (2018-05-09) [Dissertation]
      Advisor: Beaujuge, Pierre
      Committee members: Laquai, Frédéric; Takanabe, Kazuhiro; Blanchard, Philippe
      In the last decade, organic photovoltaics (OPV) have gained considerable attention with a rapid improvement of power conversion efficiency (PCE) from 5% to more than 13%. At the origin of the gradual efficiency improvements are (i) the rationalization of material design and (ii) systematic optimization of film processing condition. OPV can have a key role in markets such as building-integrated photovoltaics (BIPV). The main advantages of organic solar cells are semitransparency, low weight, good performance at low light intensity, flexibility and potential low-cost module manufacture through solution processed-based technologies. In solution processed OPV, the active layer that converts photons into electric charges is a composite of two organic compounds, a donor (D) and an acceptor (A) where the best morphology is achieved via the so-called bulk heterojunction (BHJ): an interpenetrating phase-separated D-A network. Historically, research has been focused on polymer donors and guidelines about morphology and film processing have been established. However recent studies have shown that small-molecule (SM) donors can rival their polymer counterparts in performance. The advantages of SM are a defined molecular weight, the ease of purification and a good batch-to-batch reproducibility. Using this class of material the existing guidelines have to be adjusted and refined. In this dissertation, using new SM synthesized in our laboratory, solution-processed organic solar cells are fabricated in which the morphology of the active layer is controlled by thermal annealing, the use of additive or solvent vapor annealing. In-depth analyses of the morphology are correlated to charge generation, recombination and extraction inferred from device physics. In the first part of the dissertation, using a small amount of 1,8-Diiodooctane additive that acts as a plasticizer, it is found that the D-A domains do not necessarily need to be pure and that mixed domains can also result in high performing devices. In the second part of the dissertation, the effect of solvent vapor annealing, particularly effective for SM:PCBM BHJ, is discussed where excellent control of the morphology is achieved. In the last part of the dissertation, efficient organic solar cells with open circuit voltage of >1.05V are made via fine-tuning of the morphology.
    • Band Alignment Determination of Two-Dimensional Heterojunctions and Their Electronic Applications

      Chiu, Ming-Hui (2018-05-09) [Dissertation]
      Advisor: Zhang, Xixiang
      Committee members: Li, Lain-Jong; He, Jr-Hau; Anthopoulos, Thomas D.
      Two-dimensional (2D) layered materials such as MoS2 have been recognized as high on-off ratio semiconductors which are promising candidates for electronic and optoelectronic devices. In addition to the use of individual 2D materials, the accelerated field of 2D heterostructures enables even greater functionalities. Device designs differ, and they are strongly controlled by the electronic band alignment. For example, photovoltaic cells require type II heterostructures for light harvesting, and light-emitting diodes benefit from multiple quantum wells with the type I band alignment for high emission efficiency. The vertical tunneling field-effect transistor for next-generation electronics depends on nearly broken-gap band alignment for boosting its performance. To tailor these 2D layered materials toward possible future applications, the understanding of 2D heterostructure band alignment becomes critically important. In the first part of this thesis, we discuss the band alignment of 2D heterostructures. To do so, we firstly study the interlayer coupling between two dissimilar 2D materials. We conclude that a post-anneal process could enhance the interlayer coupling of as-transferred 2D heterostructures, and heterostructural stacking imposes similar symmetry changes as homostructural stacking. Later, we precisely determine the quasi particle bandgap and band alignment of the MoS2/WSe2 heterostructure by using scan tunneling microscopy/spectroscopy (STM/S) and micron-beam X-ray photoelectron spectroscopy (μ-XPS) techniques. Lastly, we prove that the band alignment of 2D heterojunctions can be accurately predicted by Anderson’s model, which has previously failed to predict conventional bulk heterostructures. In the second part of this thesis, we develop a new Chemical Vapor Deposition (CVD) method capable of precisely controlling the growth area of p- and n-type transition metal dichalcogenides (TMDCs) and further form lateral or vertical 2D heterostructures. This method also allows p- and n-type TMDCs to separately grow in a selective area in one step. In addition, we demonstrate a first bottom-up 2D complementary inverter based on hetero-TMDCs.
    • Two-Dimensional Tellurene as Excellent Thermoelectric Material

      Sharma, Sitansh; Singh, Nirpendra; Schwingenschlögl, Udo (ACS Applied Energy Materials, American Chemical Society (ACS), 2018-04-20) [Article]
      We study the thermoelectric properties of two-dimensional tellurene by first-principles calculations and semiclassical Boltzmann transport theory. The HSE06 hybrid functional results in a moderate direct band gap of 1.48 eV at the Γ point. A high room temperature Seebeck coefficient (Sxx = 0.38 mV/K, Syy = 0.36 mV/K) is combined with anisotropic lattice thermal conductivity (κxxl = 0.43 W/m K, κyyl = 1.29 W/m K). Phonon band structures demonstrate a key role of optical phonons in the record low thermal conductivity that leads to excellent thermoelectric performance of tellurene. At room temperature and moderate hole doping of 1.2 × 10–11 cm–2, for example, a figure of merit of ZTxx = 0.8 is achieved.