• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Broad-band near-field ground motion simulations in 3-dimensional scattering media

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Geophys. J. Int.-2013-Imperatori-725-44.pdf
    Size:
    4.515Mb
    Format:
    PDF
    Description:
    Main article
    Download
    Type
    Article
    Authors
    Imperatori, W.
    Mai, Paul Martin cc
    KAUST Department
    Computational Earthquake Seismology (CES) Research Group
    Earth Science and Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2012-12-05
    Online Publication Date
    2012-12-05
    Print Publication Date
    2013-02-01
    Permanent link to this record
    http://hdl.handle.net/10754/555755
    
    Metadata
    Show full item record
    Abstract
    The heterogeneous nature of Earth's crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0–10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2–5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5–10 per cent range reproduce the available observations.
    Citation
    Broad-band near-field ground motion simulations in 3-dimensional scattering media 2012, 192 (2):725 Geophysical Journal International
    Publisher
    Oxford University Press (OUP)
    Journal
    Geophysical Journal International
    DOI
    10.1093/gji/ggs041
    Additional Links
    http://gji.oxfordjournals.org/cgi/doi/10.1093/gji/ggs041
    ae974a485f413a2113503eed53cd6c53
    10.1093/gji/ggs041
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Earth Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.