Ceruloplasmin Oxidation, a Feature of Parkinson's Disease CSF, Inhibits Ferroxidase Activity and Promotes Cellular Iron Retention
Type
ArticleAuthors
Olivieri, S.Conti, A.
Iannaccone, S.
Cannistraci, Carlo
Campanella, A.
Barbariga, M.
Codazzi, F.
Pelizzoni, I.
Magnani, G.
Pesca, M.
Franciotta, D.
Cappa, S. F.
Alessio, M.
KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionComputational Bioscience Research Center (CBRC)
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Integrative Systems Biology Lab
Date
2011-12-14Online Publication Date
2011-12-14Print Publication Date
2011-12-14Permanent link to this record
http://hdl.handle.net/10754/555663
Metadata
Show full item recordAbstract
Parkinson's disease is a neurodegenerative disorder characterized by oxidative stress and CNS iron deposition. Ceruloplasmin is an extracellular ferroxidase that regulates cellular iron loading and export, and hence protects tissues from oxidative damage. Using two-dimensional electrophoresis, we investigated ceruloplasmin patterns in the CSF of human Parkinson's disease patients. Parkinson's disease ceruloplasmin profiles proved more acidic than those found in healthy controls and in other human neurological diseases (peripheral neuropathies, amyotrophic lateral sclerosis, and Alzheimer's disease); degrees of acidity correlated with patients' pathological grading. Applying an unsupervised pattern recognition procedure to the two-dimensional electrophoresis images, we identified representative pathological clusters. In vitro oxidation of CSF in two-dimensional electrophoresis generated a ceruloplasmin shift resembling that observed in Parkinson's disease and co-occurred with an increase in protein carbonylation. Likewise, increased protein carbonylation was observed in Parkinson's disease CSF, and the same modification was directly identified in these samples on ceruloplasmin. These results indicate that ceruloplasmin oxidation contributes to pattern modification in Parkinson's disease. From the functional point of view, ceruloplasmin oxidation caused a decrease in ferroxidase activity, which in turn promotes intracellular iron retention in neuronal cell lines as well as in primary neurons, which are more sensitive to iron accumulation. Accordingly, the presence of oxidized ceruloplasmin in Parkinson's disease CSF might be used as a marker for oxidative damage and might provide new insights into the underlying pathological mechanisms.Citation
Ceruloplasmin Oxidation, a Feature of Parkinson's Disease CSF, Inhibits Ferroxidase Activity and Promotes Cellular Iron Retention 2011, 31 (50):18568 Journal of NeurosciencePublisher
Society for NeuroscienceJournal
Journal of NeuroscienceAdditional Links
http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3768-11.2011ae974a485f413a2113503eed53cd6c53
10.1523/JNEUROSCI.3768-11.2011