Show simple item record

dc.contributor.authorRojas, Jhonathan Prieto
dc.contributor.authorSevilla, Galo T.
dc.contributor.authorGhoneim, Mohamed T.
dc.contributor.authorHussain, Aftab M.
dc.contributor.authorAhmed, Sally
dc.contributor.authorNassar, Joanna M.
dc.contributor.authorBahabry, Rabab R.
dc.contributor.authorNour, Maha A.
dc.contributor.authorKutbee, Arwa T.
dc.contributor.authorByas, Ernesto
dc.contributor.authorAlsaif, Bidoor
dc.contributor.authorAlamri, Amal M.
dc.contributor.authorHussain, Muhammad Mustafa
dc.date.accessioned2015-05-25T07:56:17Z
dc.date.available2015-05-25T07:56:17Z
dc.date.issued2014-06-04
dc.identifier.citationRojas, Jhonathan P., Galo A. Torres Sevilla, Mohamed T. Ghoneim, Aftab M. Hussain, Sally M. Ahmed, Joanna M. Nassar, Rabab R. Bahabry et al. "Transformational electronics: a powerful way to revolutionize our information world." In SPIE Defense+ Security, pp. 90831K-90831K. International Society for Optics and Photonics, 2014
dc.identifier.doi10.1117/12.2050103
dc.identifier.urihttp://hdl.handle.net/10754/555641
dc.description.abstractWith the emergence of cloud computation, we are facing the rising waves of big data. It is our time to leverage such opportunity by increasing data usage both by man and machine. We need ultra-mobile computation with high data processing speed, ultra-large memory, energy efficiency and multi-functionality. Additionally, we have to deploy energy-efficient multi-functional 3D ICs for robust cyber-physical system establishment. To achieve such lofty goals we have to mimic human brain, which is inarguably the world’s most powerful and energy efficient computer. Brain’s cortex has folded architecture to increase surface area in an ultra-compact space to contain its neuron and synapses. Therefore, it is imperative to overcome two integration challenges: (i) finding out a low-cost 3D IC fabrication process and (ii) foldable substrates creation with ultra-large-scale-integration of high performance energy efficient electronics. Hence, we show a low-cost generic batch process based on trench-protect-peel-recycle to fabricate rigid and flexible 3D ICs as well as high performance flexible electronics. As of today we have made every single component to make a fully flexible computer including non-planar state-of-the-art FinFETs. Additionally we have demonstrated various solid-state memory, movable MEMS devices, energy harvesting and storage components. To show the versatility of our process, we have extended our process towards other inorganic semiconductor substrates such as silicon germanium and III-V materials. Finally, we report first ever fully flexible programmable silicon based microprocessor towards foldable brain computation and wirelessly programmable stretchable and flexible thermal patch for pain management for smart bionics. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
dc.publisherSPIE-Intl Soc Optical Eng
dc.relation.urlhttp://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2050103
dc.rightsArchived with thanks to Proceedings of SPIE
dc.titleTransformational electronics: a powerful way to revolutionize our information world
dc.typeConference Paper
dc.contributor.departmentIntegrated Nanotechnology Lab
dc.contributor.departmentElectrical Engineering Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.identifier.journalMicro- and Nanotechnology Sensors, Systems, and Applications VI
dc.conference.date2014-05-05 to 2014-05-09
dc.conference.nameMicro- and Nanotechnology Sensors, Systems, and Applications VI
dc.conference.locationBaltimore, MD, USA
dc.eprint.versionPublisher's Version/PDF
kaust.personRojas, Jhonathan Prieto
kaust.personSevilla, Galo T.
kaust.personGhoneim, Mohamed T.
kaust.personHussain, Aftab M.
kaust.personAhmed, Sally
kaust.personNassar, Joanna M.
kaust.personNour, Maha A.
kaust.personKutbee, Arwa T.
kaust.personHussain, Muhammad Mustafa
kaust.personBahabry, Rabab R.
kaust.personByas, Ernesto
kaust.personAlsaif, Bidoor
kaust.personAlamri, Amal M.
refterms.dateFOA2018-06-13T14:07:51Z


Files in this item

Thumbnail
Name:
90831K.pdf
Size:
1.888Mb
Format:
PDF
Description:
Main article

This item appears in the following Collection(s)

Show simple item record