Show simple item record

dc.contributor.authorAbou-Hamad, Edy
dc.contributor.authorBabaa, M.-R.
dc.contributor.authorBouhrara, Mohamed
dc.contributor.authorKim, Y.
dc.contributor.authorSaih, Youssef
dc.contributor.authorDennler, S.
dc.contributor.authorMauri, F.
dc.contributor.authorBasset, Jean-Marie
dc.contributor.authorGoze-Bac, C.
dc.contributor.authorWågberg, T.
dc.date.accessioned2015-05-17T20:46:51Z
dc.date.available2015-05-17T20:46:51Z
dc.date.issued2011-10-10
dc.identifier.citationStructural properties of carbon nanotubes derived from 13C NMR, 2011, 84 (16) Physical Review B
dc.identifier.issn1098-0121
dc.identifier.issn1550-235X
dc.identifier.doi10.1103/PhysRevB.84.165417
dc.identifier.urihttp://hdl.handle.net/10754/552994
dc.description.abstractWe present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.
dc.publisherAmerican Physical Society (APS)
dc.relation.urlhttp://link.aps.org/doi/10.1103/PhysRevB.84.165417
dc.rightsArchived with thanks to Physical Review B
dc.titleStructural properties of carbon nanotubes derived from 13C NMR
dc.typeArticle
dc.contributor.departmentChemical Science Program
dc.contributor.departmentKAUST Catalysis Center (KCC)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalPhysical Review B
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionnanoNMRI group, Laboratoire Charles Coulomb, CNRS UMR5221, Université Montpellier II, Place E. Bataillon, 34095 Montpellier, Cedex 5, France
dc.contributor.institutionDepartment of Chemical Engineering, University of Technology PETRONAS 31750 Tronoh, Perak, Malaysia
dc.contributor.institutionDepartment of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
dc.contributor.institutionInstitut de Minéralogie et de Physique des milieux Condensés, Univerity Paris VI, 140 rue de Lourmel 75015 Paris, France
dc.contributor.institutionDepartment of Physics, Umeå University, 901 87 Umeå, Sweden
kaust.personAbou-Hamad, Edy
kaust.personBouhrara, Mohamed
kaust.personSaih, Youssef
kaust.personBasset, Jean-Marie
refterms.dateFOA2018-06-13T10:05:05Z


Files in this item

Thumbnail
Name:
PhysRevB.84.165417.pdf
Size:
402.5Kb
Format:
PDF
Description:
Main article

This item appears in the following Collection(s)

Show simple item record