Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schrödinger equation
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
PRIMALIGHT Research Group
Physical Science and Engineering (PSE) Division
Date
2011-12-05Permanent link to this record
http://hdl.handle.net/10754/552992
Metadata
Show full item recordAbstract
We characterize the full family of soliton solutions sitting over a background plane wave and ruled by the cubic-quintic nonlinear Schrödinger equation in the regime where a quintic focusing term represents a saturation of the cubic defocusing nonlinearity. We discuss the existence and properties of solitons in terms of catastrophe theory and fully characterize bistability and instabilities of the dark-antidark pairs, revealing mechanisms of decay of antidark solitons into dispersive shock waves.Citation
Bistability and instability of dark-antidark solitons in the cubic-quintic nonlinear Schrödinger equation 2011, 84 (6) Physical Review APublisher
American Physical Society (APS)Journal
Physical Review AarXiv
1111.1872Additional Links
http://link.aps.org/doi/10.1103/PhysRevA.84.063809ae974a485f413a2113503eed53cd6c53
10.1103/PhysRevA.84.063809