Micro-Raman study of the microheterogeneity in the MA-MC phase transition in 0.67PbMg1/3Nb2/3O3-0.33PbTiO3 single crystal
Type
ArticleKAUST Department
Advanced Nanofabrication, Imaging and Characterization Core LabImaging and Characterization Core Lab
Date
2011-04-21Online Publication Date
2011-04-21Print Publication Date
2011-04-15Permanent link to this record
http://hdl.handle.net/10754/552756
Metadata
Show full item recordAbstract
Polarized Raman spectroscopy has been employed to investigate the evolution of the microstructure of 0.67PbMg1/3Nb2/3O3-0.33PbTiO3 (PMN-33%PT) single crystal in the temperature range from −195 to 300 °C. The M A-M C-cubic transition sequence was observed in the microareas with M A-type (space group Cm) and M C-type (space group Pm) monoclinic structures. Interestingly, the M A-M Cphase transition temperature exhibited remarkable microareal dependence due to the spatial inhomogeneity of polar nanoregions (PNRs). The M C-cubic phase transition took place at 155 °C in both microareas, which consisted well with previous reports. These results reveal that the phase transition in PMN-33%PT single crystal is closely related with the thermal dynamics of PNRs, which will be useful for understanding the microheterogeneity in this compound.Citation
Micro-Raman study of the microheterogeneity in the MA-MC phase transition in 0.67PbMg1/3Nb2/3O3-0.33PbTiO3 single crystal 2011, 109 (8):083517 Journal of Applied PhysicsPublisher
AIP PublishingJournal
Journal of Applied Physicsae974a485f413a2113503eed53cd6c53
10.1063/1.3574666