Geometric factors in the magnetoresistance of n-doped InAs epilayers
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Date
2013-11-28Online Publication Date
2013-11-28Print Publication Date
2013-11-28Permanent link to this record
http://hdl.handle.net/10754/552524
Metadata
Show full item recordAbstract
We investigate the magnetoresistance (MR) effect in n-doped InAs and InAs/metal hybrid devices with geometries tailored to elucidate the physical mechanism and the role of geometry in the MR. Despite the isotropic Fermi surface in InAs, we observe a strong intrinsic MR in the InAs epilayer due to the existence of a surface conducting layer. Experimental comparison confirms that the extraordinary MR in the InAs/metal hybrids outperforms the orbital MR in the Corbino disk in terms of both the MR ratio and the magnetic field resolution. The results also indicate the advantage of a two-contact configuration in the hybrid devices over a four-contact one with respect to the magnetic field resolution. This is in contrast to previously reported results, where performance was evaluated in terms of the MR ratio and a four-contact configuration was found to be optimal. By applying Kohler's rule, we find that at temperatures above 75 K the extraordinary MR violates Kohler's rule, due to multiple relaxation rates, whereas the orbital MR obeys it. This finding can be used to distinguish the two geometric effects, the extraordinary MR and the orbital MR, from each other.Citation
Geometric factors in the magnetoresistance of n-doped InAs epilayers 2013, 114 (20):203908 Journal of Applied PhysicsPublisher
AIP PublishingJournal
Journal of Applied Physicsae974a485f413a2113503eed53cd6c53
10.1063/1.4834518