• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Impact of model structure and parameterization on Penman-Monteith type evaporation models

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    1-s2.0-S0022169415002577-main.pdf
    Size:
    1.938Mb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Article
    Authors
    Ershadi, Ali cc
    McCabe, Matthew cc
    Evans, J. P. cc
    Wood, E.F.
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Earth System Observation and Modelling
    Environmental Science and Engineering Program
    Water Desalination and Reuse Research Center (WDRC)
    Date
    2015-04-12
    Online Publication Date
    2015-04-12
    Print Publication Date
    2015-06
    Permanent link to this record
    http://hdl.handle.net/10754/550319
    
    Metadata
    Show full item record
    Abstract
    The impact of model structure and parameterization on the estimation of evaporation is investigated across a range of Penman-Monteith type models. To examine the role of model structure on flux retrievals, three different retrieval schemes are compared. The schemes include a traditional single-source Penman-Monteith model (Monteith, 1965), a two-layer model based on Shuttleworth and Wallace (1985) and a three-source model based on Mu et al. (2011). To assess the impact of parameterization choice on model performance, a number of commonly used formulations for aerodynamic and surface resistances were substituted into the different formulations. Model response to these changes was evaluated against data from twenty globally distributed FLUXNET towers, representing a cross-section of biomes that include grassland, cropland, shrubland, evergreen needleleaf forest and deciduous broadleaf forest. Scenarios based on 14 different combinations of model structure and parameterization were ranked based on their mean value of Nash-Sutcliffe Efficiency. Results illustrated considerable variability in model performance both within and between biome types. Indeed, no single model consistently outperformed any other when considered across all biomes. For instance, in grassland and shrubland sites, the single-source Penman-Monteith model performed the best. In croplands it was the three-source Mu model, while for evergreen needleleaf and deciduous broadleaf forests, the Shuttleworth-Wallace model rated highest. Interestingly, these top ranked scenarios all shared the simple lookup-table based surface resistance parameterization of Mu et al. (2011), while a more complex Jarvis multiplicative method for surface resistance produced lower ranked simulations. The highly ranked scenarios mostly employed a version of the Thom (1975) formulation for aerodynamic resistance that incorporated dynamic values of roughness parameters. This was true for all cases except over deciduous broadleaf sites, where the simpler aerodynamic resistance approach of Mu et al. (2011) showed improved performance. Overall, the results illustrate the sensitivity of Penman-Monteith type models to model structure, parameterization choice and biome type. A particular challenge in flux estimation relates to developing robust and broadly applicable model formulations. With many choices available for use, providing guidance on the most appropriate scheme to employ is required to advance approaches for routine global scale flux estimates, undertake hydrometeorological assessments or develop hydrological forecasting tools, amongst many other applications. In such cases, a multi-model ensemble or biome-specific tiled evaporation product may be an appropriate solution, given the inherent variability in model and parameterization choice that is observed within single product estimates.
    Citation
    Impact of model structure and parameterization on Penman-Monteith type evaporation models 2015 Journal of Hydrology
    Publisher
    Elsevier BV
    Journal
    Journal of Hydrology
    DOI
    10.1016/j.jhydrol.2015.04.008
    Additional Links
    http://linkinghub.elsevier.com/retrieve/pii/S0022169415002577
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.jhydrol.2015.04.008
    Scopus Count
    Collections
    Articles; Biological and Environmental Science and Engineering (BESE) Division; Environmental Science and Engineering Program; Water Desalination and Reuse Research Center (WDRC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.