Show simple item record

dc.contributor.authorCastruccio, Stefano
dc.contributor.authorGenton, Marc G.
dc.date.accessioned2015-04-08T12:27:41Z
dc.date.available2015-04-08T12:27:41Z
dc.date.issued2016-07-08
dc.identifier.citationCompressing an Ensemble with Statistical Models: An Algorithm for Global 3D Spatio-Temporal Temperature 2015:0 Technometrics
dc.identifier.issn0040-1706
dc.identifier.issn1537-2723
dc.identifier.doi10.1080/00401706.2015.1027068
dc.identifier.urihttp://hdl.handle.net/10754/348634
dc.description.abstractOne of the main challenges when working with modern climate model ensembles is the increasingly larger size of the data produced, and the consequent difficulty in storing large amounts of spatio-temporally resolved information. Many compression algorithms can be used to mitigate this problem, but since they are designed to compress generic scientific data sets, they do not account for the nature of climate model output and they compress only individual simulations. In this work, we propose a different, statistics-based approach that explicitly accounts for the space-time dependence of the data for annual global three-dimensional temperature fields in an initial condition ensemble. The set of estimated parameters is small (compared to the data size) and can be regarded as a summary of the essential structure of the ensemble output; therefore, it can be used to instantaneously reproduce the temperature fields in an ensemble with a substantial saving in storage and time. The statistical model exploits the gridded geometry of the data and parallelization across processors. It is therefore computationally convenient and allows to fit a non-trivial model to a data set of one billion data points with a covariance matrix comprising of 10^18 entries.
dc.publisherInforma UK Limited
dc.relation.urlhttp://www.tandfonline.com/doi/full/10.1080/00401706.2015.1027068
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Technometrics on April 2, 2015, available online: http://wwww.tandfonline.com/10.1080/00401706.2015.1027068.
dc.titleCompressing an Ensemble with Statistical Models: An Algorithm for Global 3D Spatio-Temporal Temperature
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentSpatio-Temporal Statistics and Data Analysis Group
dc.contributor.departmentStatistics Program
dc.identifier.journalTechnometrics
dc.eprint.versionPost-print
dc.contributor.institutionSchool of Mathematics & Statistics, Newcastle University, Newcastle Upon Tyne, NE1 7RU United Kingdom
kaust.personGenton, Marc G.
dc.relation.issupplementedbyDOI:10.6084/M9.FIGSHARE.1378931
refterms.dateFOA2016-10-02T00:00:00Z
display.relations<b> Is Supplemented By:</b> <br/> <ul><li><i>[Dataset]</i> <br/> Castruccio, S., & Genton, M. G. (2016). Compressing an Ensemble With Statistical Models: An Algorithm for Global 3D Spatio-Temporal Temperature. Figshare. https://doi.org/10.6084/m9.figshare.1378931. DOI: <a href="https://doi.org/10.6084/M9.FIGSHARE.1378931">10.6084/M9.FIGSHARE.1378931</a> HANDLE: <a href="http://hdl.handle.net/10754/624122">10754/624122</a></li></ul>
dc.date.published-online2016-07-08
dc.date.published-print2016-07-02


Files in this item

Thumbnail
Name:
0040170620151027068.pdf
Size:
13.62Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record