Show simple item record

dc.contributor.authorChroneos, A.
dc.contributor.authorTahini, Hassan Ali
dc.contributor.authorSchwingenschlögl, Udo
dc.contributor.authorGrimes, R. W.
dc.date.accessioned2015-03-17T06:02:36Z
dc.date.available2015-03-17T06:02:36Z
dc.date.issued2014-07-14
dc.identifier.citationAntisites in III-V semiconductors: Density functional theory calculations 2014, 116 (2):023505 Journal of Applied Physics
dc.identifier.issn0021-8979
dc.identifier.issn1089-7550
dc.identifier.doi10.1063/1.4887135
dc.identifier.urihttp://hdl.handle.net/10754/346744
dc.description.abstractDensity functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III=Al, Ga, and In and V=P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites (III V q) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites (V I I I q) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III V q defects dominate under III-rich conditions and V I I I q under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies. © 2014 AIP Publishing LLC.
dc.publisherAIP Publishing
dc.relation.urlhttp://scitation.aip.org/content/aip/journal/jap/116/2/10.1063/1.4887135
dc.rightsArchived with thanks to Journal of Applied Physics
dc.titleAntisites in III-V semiconductors: Density functional theory calculations
dc.typeArticle
dc.contributor.departmentComputational Physics and Materials Science (CPMS)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalJournal of Applied Physics
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionEngineering and Innovation, The Open University, Milton Keynes MK7 6AA, United Kingdom
dc.contributor.institutionDepartment of Materials, Imperial College London, London SW7 2AZ, United Kingdom
dc.contributor.institutionDepartment of Materials, Imperial College London, London SW7 2AZ, United Kingdom
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)
kaust.personTahini, Hassan Ali
kaust.personSchwingenschlögl, Udo
refterms.dateFOA2018-06-13T16:16:03Z


Files in this item

Thumbnail
Name:
1.4887135.pdf
Size:
1.262Mb
Format:
PDF
Description:
Main article

This item appears in the following Collection(s)

Show simple item record