Show simple item record

dc.contributor.authorRoqan, Iman S.
dc.contributor.authorVenkatesh, S.
dc.contributor.authorZhang, Zhenkui
dc.contributor.authorHussain, Shahid
dc.contributor.authorBantounas, Ioannis
dc.contributor.authorFranklin, J. B.
dc.contributor.authorFlemban, Tahani H.
dc.contributor.authorZou, B.
dc.contributor.authorLee, J.-S.
dc.contributor.authorSchwingenschlögl, Udo
dc.contributor.authorPetrov, P. K.
dc.contributor.authorRyan, M. P.
dc.contributor.authorAlford, N. M.
dc.date.accessioned2015-03-17T06:09:33Z
dc.date.available2015-03-17T06:09:33Z
dc.date.issued2015-02-21
dc.identifier.citationObtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes 2015, 117 (7):073904 Journal of Applied Physics
dc.identifier.issn0021-8979
dc.identifier.issn1089-7550
dc.identifier.doi10.1063/1.4908288
dc.identifier.urihttp://hdl.handle.net/10754/346729
dc.description.abstractWe demonstrate the fabrication of reproducible long-range ferromagnetism (FM) in highly crystalline GdxZn1-xO thin films by controlling the defects. Films are grown on lattice-matched substrates by pulsed laser deposition at low oxygen pressures (≤25 mTorr) and low Gd concentrations (x ≤ 0.009). These films feature strong FM (10 μB per Gd atom) at room temperature. While films deposited at higher oxygen pressure do not exhibit FM, FM is recovered by post-annealing these films under vacuum. These findings reveal the contribution of oxygen deficiency defects to the long-range FM. We demonstrate the possible FM mechanisms, which are confirmed by density functional theory study, and show that Gd dopants are essential for establishing FM that is induced by intrinsic defects in these films.
dc.publisherAIP Publishing
dc.relation.urlhttp://scitation.aip.org/content/aip/journal/jap/117/7/10.1063/1.4908288
dc.rightsArchived with thanks to Journal of Applied Physics
dc.titleObtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes
dc.typeArticle
dc.contributor.departmentComputer Science Program
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentMaterials Science and Engineering Program
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
dc.identifier.journalJournal of Applied Physics
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionDepartment of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom
dc.contributor.institutionDepartment of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom
dc.contributor.institutionStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
dc.contributor.institutionDepartment of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom
dc.contributor.institutionDepartment of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom
dc.contributor.institutionDepartment of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)
kaust.personRoqan, Iman S.
kaust.personZhang, Zhenkui
kaust.personBantounas, Ioannis
kaust.personSchwingenschlögl, Udo
kaust.personVenkatesh, Suresh
kaust.personHussain, Shahid
kaust.personFlemban, Tahani H.
refterms.dateFOA2018-06-13T16:14:52Z


Files in this item

Thumbnail
Name:
1.4908288.pdf
Size:
1.521Mb
Format:
PDF
Description:
Main article

This item appears in the following Collection(s)

Show simple item record