• Login
    View Item 
    •   Home
    • Academic Divisions
    • Physical Science & Engineering (PSE)
    • Mechanical Engineering Program
    • View Item
    •   Home
    • Academic Divisions
    • Physical Science & Engineering (PSE)
    • Mechanical Engineering Program
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    INVESTIGATION OF THE STATIC AND DYNAMIC BEHAVIOR OF A MICRO MIRROR

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    SaadIlyasThesis.pdf
    Size:
    2.127Mb
    Format:
    PDF
    Description:
    Saad Illyas Final Thesis
    Download
    Type
    Thesis
    Authors
    Ilyas, Saad cc
    Advisors
    Younis, Mohammad I. cc
    Committee members
    Hussain, Muhammad Mustafa cc
    Claudel, Christian G. cc
    Program
    Mechanical Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2014-11
    Embargo End Date
    2015-12-09
    Permanent link to this record
    http://hdl.handle.net/10754/337008
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2015-12-09.
    Abstract
    This dissertation presents the modeling, design, fabrication, and experimental testing of a polyimide based micro mirror for applications in MEMS logic devices based on its static behavior and in MEMS resonators using mixed frequency excitation. First, a universal MEMS logic device that can perform all the logic operations, such as INVERTER, AND, NAND, NOR, and OR gates using one physical structure, within an operating range of 0-10 volts. It can also perform XOR and XNOR with one access inverter using the same structure with different electrical interconnects. We discuss the fabrication, simulations and experimental results demonstrating these logic operations on a polyimide micro mirror. The device is capable of performing the switching operation with a frequency of 1 kHz, a switching time of 8.2 μs, and an electrical lifetime of 8000 cycles. Second, this study presents an experimental and theoretical investigation of a micro mirror under a mixed frequency signal composed of two harmonic AC sources. The experimental and theoretical dynamics are explored via frequency sweeps in the desired neighborhoods. One frequency is fixed while the other frequency is swept through a wide 5 range to study the dynamic responses of the micro mirror. These responses are studied under different frequencies and different input voltages. The results show interesting dynamics, where the system exhibits primary resonance, and combination resonances of additive and subtractive type. The mixed excitation is demonstrated as a way to increase the bandwidth of the resonator near primary resonance, which can be promising for resonant sensing applications in the effort to increase the signal-noise ratio over extended frequency range. It can be promising for energy harvesting as well; since it provides the system with resonances of very high amplitudes at very low frequencies regardless of what is the natural frequency of the system, however this still needs further investigation.
    Citation
    Ilyas, S. (2014). INVESTIGATION OF THE STATIC AND DYNAMIC BEHAVIOR OF A MICRO MIRROR. KAUST Research Repository. https://doi.org/10.25781/KAUST-4M433
    DOI
    10.25781/KAUST-4M433
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-4M433
    Scopus Count
    Collections
    MS Theses; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.