DDMGD: the database of text-mined associations between genes methylated in diseases from different species
Type
ArticleKAUST Department
Applied Mathematics and Computational Science ProgramBioscience Core Lab
Computational Bioscience Research Center (CBRC)
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Date
2014-11-14Online Publication Date
2014-11-14Print Publication Date
2015-01-28Permanent link to this record
http://hdl.handle.net/10754/336990
Metadata
Show full item recordAbstract
Gathering information about associations between methylated genes and diseases is important for diseases diagnosis and treatment decisions. Recent advancements in epigenetics research allow for large-scale discoveries of associations of genes methylated in diseases in different species. Searching manually for such information is not easy, as it is scattered across a large number of electronic publications and repositories. Therefore, we developed DDMGD database (http://www.cbrc.kaust.edu.sa/ddmgd/) to provide a comprehensive repository of information related to genes methylated in diseases that can be found through text mining. DDMGD's scope is not limited to a particular group of genes, diseases or species. Using the text mining system DEMGD we developed earlier and additional post-processing, we extracted associations of genes methylated in different diseases from PubMed Central articles and PubMed abstracts. The accuracy of extracted associations is 82% as estimated on 2500 hand-curated entries. DDMGD provides a user-friendly interface facilitating retrieval of these associations ranked according to confidence scores. Submission of new associations to DDMGD is provided. A comparison analysis of DDMGD with several other databases focused on genes methylated in diseases shows that DDMGD is comprehensive and includes most of the recent information on genes methylated in diseases.Citation
DDMGD: the database of text-mined associations between genes methylated in diseases from different species 2014 Nucleic Acids ResearchSponsors
King Abdullah University of Science and Technology.Publisher
Oxford University Press (OUP)Journal
Nucleic Acids ResearchPubMed ID
25398897PubMed Central ID
PMC4383966Additional Links
http://nar.oxfordjournals.org/lookup/doi/10.1093/nar/gku1168ae974a485f413a2113503eed53cd6c53
10.1093/nar/gku1168
Scopus Count
The following license files are associated with this item:
Related articles
- Combining position weight matrices and document-term matrix for efficient extraction of associations of methylated genes and diseases from free text.
- Authors: Bin Raies A, Mansour H, Incitti R, Bajic VB
- Issue date: 2013
- DESTAF: a database of text-mined associations for reproductive toxins potentially affecting human fertility.
- Authors: Dawe AS, Radovanovic A, Kaur M, Sagar S, Seshadri SV, Schaefer U, Kamau AA, Christoffels A, Bajic VB
- Issue date: 2012 Jan
- DISEASES: text mining and data integration of disease-gene associations.
- Authors: Pletscher-Frankild S, Pallejà A, Tsafou K, Binder JX, Jensen LJ
- Issue date: 2015 Mar
- miRiaD: A Text Mining Tool for Detecting Associations of microRNAs with Diseases.
- Authors: Gupta S, Ross KE, Tudor CO, Wu CH, Schmidt CJ, Vijay-Shanker K
- Issue date: 2016 Apr 29
- IBDDB: a manually curated and text-mining-enhanced database of genes involved in inflammatory bowel disease.
- Authors: Khan F, Radovanovic A, Gojobori T, Kaur M
- Issue date: 2021 Apr 30