Show simple item record

dc.contributor.advisorRavasi, Timothy
dc.contributor.authorMavromatis, Charalampos Harris
dc.date.accessioned2014-12-02T13:55:12Z
dc.date.available2014-12-02T13:55:12Z
dc.date.issued2014
dc.identifier.doi10.25781/KAUST-P96TR
dc.identifier.urihttp://hdl.handle.net/10754/336484
dc.description.abstractUrinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC), the main causative agent of UTIs, can invade and replicate within bladder epithelial cells, and recent evidence demonstrated that some UPEC strains also survive within macrophages. To understand the mechanisms of host subversion that enable UPEC to survive within macrophages, and the contribution of macrophages to UPEC-mediated pathology, I performed host-pathogen co-transcriptome analyses using RNA sequencing. I developed an effective computational framework that simultaneously separated, annotated, and quantified the mammalian and bacterial transcriptomes. First, mouse bone morrow-derived macrophages (BMM) were challenged over a 24 h time course with UPEC reference strains, UTI89 (cystitis strain), 83972 and VR50 (asymptomatic bacteriuria strains) that possess contrasting intramacrophage phenotypes. My results showed that BMM responded to the three different UPEC strains with broadly similar gene expression programs. In contrast to the conserved pattern of BMM responses, the transcriptional responses of the different UPEC strains diverged markedly from each other. Hypothesizing that genes upregulated at 24 h post-infection may contribute to intramacrophage survival, I identified UTI89 genes upregulated at this time point, and showed that deletion of one of these genes (pspA) compromised intramacrophage survival of UPEC strain UTI89. Second, human monocyte-derived macrophages (HMDM) and BMM were challenged over a 24 h course with the UPEC strain EC958, a globally disseminated, multi-drug resistant strain. My analysis identified extensive divergence in UPEC-regulated orthologous gene expression between HMDM and BMM, and I validated both known and novel genes in the context of differential regulation. On the contrary, the transcriptional response of EC958 showed a broad conservation across both mammalian intramacrophage environments. My study thus provides both a unique co-culture approach to study infection in vitro and a technological framework for simultaneously capturing global changes in host-pathogen interactions at the transcriptional level in co-cultures. In conclusion, this work has generated new insights into the mechanisms that UPEC strains exploit to persist within the mouse intramacrophage environment, as well as differences in the transcriptional repertoire of HMDM and BMM challenged with the same UPEC strain.
dc.language.isoen
dc.subjectCo-transcriptome
dc.subjectInnate Immunity
dc.subjectUropthogenic E. Coli
dc.subjectRNA-Seq
dc.subjectUrinary Tract Infection
dc.subjectHost-pathogen
dc.titleMapping of the Co-Transcriptomes of UPEC-Infected Macrophages Reveals New Insights into the Molecular Basis of Host-Pathogen Interactions in Human and Mouse
dc.typeDissertation
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
thesis.degree.grantorKing Abdullah University of Science and Technology
dc.contributor.committeememberMerzaban, Jasmeen
dc.contributor.committeememberKalnis, Panos
dc.contributor.committeememberSweet, Matthew
thesis.degree.disciplineBioscience
thesis.degree.nameDoctor of Philosophy
refterms.dateFOA2018-06-13T10:40:09Z


Files in this item

Thumbnail
Name:
Charalampos Mavromatis Dissertation.pdf
Size:
23.57Mb
Format:
PDF
Description:
Charalampos Mavromatis Dissertation

This item appears in the following Collection(s)

Show simple item record