• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesTitleAuthorsKAUST AuthorsIssue DateSubmit DateSubjectsThis CollectionTitleAuthorsKAUST AuthorsIssue DateSubmit DateSubjects

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Mapping of the Co-Transcriptomes of UPEC-Infected Macrophages Reveals New Insights into the Molecular Basis of Host-Pathogen Interactions in Human and Mouse

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Charalampos Mavromatis Dissert ...
    Size:
    23.57Mb
    Format:
    PDF
    Description:
    Charalampos Mavromatis Dissertation
    Download
    Type
    Dissertation
    Authors
    Mavromatis, Charalampos Harris cc
    Advisors
    Ravasi, Timothy cc
    Committee Members
    Merzaban, Jasmeen cc
    Kalnis, Panos cc
    Sweet, Matthew
    Program
    Bioscience
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Date
    2014
    Permanent link to this record
    http://hdl.handle.net/10754/336484
    
    Metadata
    Show full item record
    Abstract
    Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC), the main causative agent of UTIs, can invade and replicate within bladder epithelial cells, and recent evidence demonstrated that some UPEC strains also survive within macrophages. To understand the mechanisms of host subversion that enable UPEC to survive within macrophages, and the contribution of macrophages to UPEC-mediated pathology, I performed host-pathogen co-transcriptome analyses using RNA sequencing. I developed an effective computational framework that simultaneously separated, annotated, and quantified the mammalian and bacterial transcriptomes. First, mouse bone morrow-derived macrophages (BMM) were challenged over a 24 h time course with UPEC reference strains, UTI89 (cystitis strain), 83972 and VR50 (asymptomatic bacteriuria strains) that possess contrasting intramacrophage phenotypes. My results showed that BMM responded to the three different UPEC strains with broadly similar gene expression programs. In contrast to the conserved pattern of BMM responses, the transcriptional responses of the different UPEC strains diverged markedly from each other. Hypothesizing that genes upregulated at 24 h post-infection may contribute to intramacrophage survival, I identified UTI89 genes upregulated at this time point, and showed that deletion of one of these genes (pspA) compromised intramacrophage survival of UPEC strain UTI89. Second, human monocyte-derived macrophages (HMDM) and BMM were challenged over a 24 h course with the UPEC strain EC958, a globally disseminated, multi-drug resistant strain. My analysis identified extensive divergence in UPEC-regulated orthologous gene expression between HMDM and BMM, and I validated both known and novel genes in the context of differential regulation. On the contrary, the transcriptional response of EC958 showed a broad conservation across both mammalian intramacrophage environments. My study thus provides both a unique co-culture approach to study infection in vitro and a technological framework for simultaneously capturing global changes in host-pathogen interactions at the transcriptional level in co-cultures. In conclusion, this work has generated new insights into the mechanisms that UPEC strains exploit to persist within the mouse intramacrophage environment, as well as differences in the transcriptional repertoire of HMDM and BMM challenged with the same UPEC strain.
    DOI
    10.25781/KAUST-P96TR
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-P96TR
    Scopus Count
    Collections
    Biological and Environmental Sciences and Engineering (BESE) Division; Bioscience Program; Dissertations

    entitlement

     
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.