Name:
Bioinformatics-2014-Khamis-bioinformatics_btu738.pdf
Size:
1.125Mb
Format:
PDF
Description:
Article - Full Text
Name:
Supplementary_Materials.docx
Size:
5.065Mb
Format:
Microsoft Word 2007
Description:
Supplemental File 1
Name:
Supplementary_Materials_S7.xlsx
Size:
44.17Kb
Format:
Microsoft Excel 2007
Description:
Supplemental File 2
Type
ArticleKAUST Department
Computational Bioscience Research Center (CBRC)Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Computer Science Program
Applied Mathematics and Computational Science Program
Date
2014-11-10Online Publication Date
2014-11-10Print Publication Date
2015-03-15Permanent link to this record
http://hdl.handle.net/10754/334971
Metadata
Show full item recordAbstract
Motivation: The increased prevalence of multi-drug resistant (MDR) pathogens heightens the need to design new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit broad-spectrum potent activity against MDR pathogens and kills rapidly, thus giving rise to AMPs being recognized as a potential substitute for conventional antibiotics. Designing new AMPs using current in-silico approaches is, however, challenging due to the absence of suitable models, large number of design parameters, testing cycles, production time and cost. To date, AMPs have merely been categorized into families according to their primary sequences, structures and functions. The ability to computationally determine the properties that discriminate AMP families from each other could help in exploring the key characteristics of these families and facilitate the in-silico design of synthetic AMPs. Results: Here we studied 14 AMP families and sub-families. We selected a specific description of AMP amino acid sequence and identified compositional and physicochemical properties of amino acids that accurately distinguish each AMP family from all other AMPs with an average sensitivity, specificity and precision of 92.88%, 99.86% and 95.96%, respectively. Many of our identified discriminative properties have been shown to be compositional or functional characteristics of the corresponding AMP family in literature. We suggest that these properties could serve as guides for in-silico methods in design of novel synthetic AMPs. The methodology we developed is generic and has a potential to be applied for characterization of any protein family.Citation
Khamis, A. M., Essack, M., Gao, X., & Bajic, V. B. (2014). Distinct Profiling of Antimicrobial Peptide Families. Bioinformatics. doi: 10.1093/bioinformatics/btu738Sponsors
This work was supported by KAUST Base Research Fund of VBB and KAUST Collaborative Research Funds of XG.Publisher
Oxford University Press (OUP)Journal
BioinformaticsPubMed ID
25388148PubMed Central ID
PMC4380027ae974a485f413a2113503eed53cd6c53
10.1093/bioinformatics/btu738
Scopus Count
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Related articles
- dbAMP: an integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data.
- Authors: Jhong JH, Chi YH, Li WC, Lin TH, Huang KY, Lee TY
- Issue date: 2019 Jan 8
- Leveraging family-specific signatures for AMP discovery and high-throughput annotation.
- Authors: Waghu FH, Barai RS, Idicula-Thomas S
- Issue date: 2016 Apr 19
- Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides.
- Authors: Juretić D, Vukičević D, Petrov D, Novković M, Bojović V, Lučić B, Ilić N, Tossi A
- Issue date: 2011 Apr
- Antimicrobial peptides: therapeutic potentials.
- Authors: Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ
- Issue date: 2014 Dec
- DAMPD: a manually curated antimicrobial peptide database.
- Authors: Seshadri Sundararajan V, Gabere MN, Pretorius A, Adam S, Christoffels A, Lehväslaiho M, Archer JA, Bajic VB
- Issue date: 2012 Jan