MHD mixed convective boundary layer flow of a nanofluid through a porous medium due to an exponentially stretching sheet
Name:
Article-Mathematic-MHD_mixed_-2012.pdf
Size:
2.786Mb
Format:
PDF
Description:
Article - Full Text
Type
ArticleKAUST Department
Applied Mathematics and Computational Science ProgramComputational Transport Phenomena Lab
Earth Science and Engineering Program
Physical Science and Engineering (PSE) Division
Date
2012Permanent link to this record
http://hdl.handle.net/10754/334650
Metadata
Show full item recordAbstract
Magnetohydrodynamic (MHD) boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed. 2012 M. Ferdows et al.Citation
Ferdows M, Khan MS, Alam MM, Sun S (2012) MHD Mixed Convective Boundary Layer Flow of a Nanofluid through a Porous Medium due to an Exponentially Stretching Sheet. Mathematical Problems in Engineering 2012: 1-21. doi:10.1155/2012/408528.Publisher
Hindawi Limitedae974a485f413a2113503eed53cd6c53
10.1155/2012/408528
Scopus Count
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Related items
Showing items related by title, author, creator and subject.
-
LARGE-EDDY SIMULATIONS OF A SEPARATION/REATTACHMENT BUBBLE IN A TURBULENT-BOUNDARY-LAYER SUBJECTED TO A PRESCRIBED UPPER-BOUNDARY, VERTICAL-VELOCITY PROFILECheng, Wan; Pullin, D. I.; Samtaney, Ravi (Proceedings of Ninth International Symposium on Turbulence and Shear Flow Phenomena (TSFP-9), 2015-06-30) [Conference Paper]We describe large-eddy simulations of turbulent boundary-layer flow over a flat plate at high Reynolds number in the presence of an unsteady, three-dimensional flow separation/reattachment bubble. The stretched-vortex subgrid-scale model is used in the main flow domain combined with a wall-model that is a two-dimensional extension of that developed by Chung & Pullin (2009). Flow separation and re-attachment of the incoming boundary layer is induced by prescribing wall-normal velocity distribution on the upper boundary of the flow domain that produces an adverse-favorable stream-wise pressure distribution at the wall. The LES predicts the distribution of mean shear stress along the wall including the interior of the separation bubble. Several properties of the separation/reattachment flow are discussed.
-
Particle concentration variation for inflow profiles in high reynolds number turbulent boundary layerRahman, Mustafa M.; Samtaney, Ravi (ASME International, 2020-10-12) [Conference Paper]Large-eddy simulations (LES) of incompressible turbulent boundary-layer flows can simulate a fundamental unsteady turbulent flow, including time-variant streamwise and wall-normal velocity as well as the near-wall locations of significant turbulence intensities. A typical illustration of turbulent flows with such high Reynolds numbers can be roughly approximated to atmospheric boundary-layer flows. To bypass the demanding mesh criteria of near-ground field and direct numerical simulations, we adopt a virtual-wall model with a stretched-vortex subgrid-scale model. We simulate the dynamics of solid particles in this wall-modeled LES approach toward incompressible flow. The particles considered are both charged and uncharged, and have a fixed concentration profile with no fluctuations at the inflow. An extended streamwise simulation domain is implemented as an alternative to rerunning the simulation with a turbulent inflow profile from the simulation of the previous downstream profile. By extending the streamwise domain, the fluctuation dynamics of the particles reach a steady state far downstream from the inflow. The streamwise and altitude variation of the particle parameters are compared for various particle-concentration inflow profiles. Furthermore, an estimate of the streamwise variation of parameters is also observed. This study is the first step towards enhancing our understanding of the particle dynamics in turbulent flows.
-
Modeling and analysis of large-eddy simulations of particle-laden turbulent boundary layer flowsRahman, Mustafa M.; Samtaney, Ravi (55th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics (AIAA), 2017-01-05) [Conference Paper]We describe a framework for the large-eddy simulation of solid particles suspended and transported within an incompressible turbulent boundary layer (TBL). For the fluid phase, the large-eddy simulation (LES) of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Cheng, Pullin & Samtaney (J. Fluid Mech., 2015). This LES model is virtually parameter free and involves no active filtering of the computed velocity field. Furthermore, a recycling method to generate turbulent inflow is implemented. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The numerical method in this framework is based on a fractional-step method with an energy-conservative fourth-order finite difference scheme on a staggered mesh. This code is parallelized based on standard message passing interface (MPI) protocol and is designed for distributed-memory machines. It is proposed to utilize this framework to examine transport of particles in very large-scale simulations. The solver is validated using the well know result of Taylor-Green vortex case. A large-scale sandstorm case is simulated and the altitude variations of number density along with its fluctuations are quantified.