Name:
Article-Energies-Water_Desa-2010-08-03.pdf
Size:
441.5Kb
Format:
PDF
Description:
Article - Full Text
Type
ArticleKAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionEnvironmental Science and Engineering Program
Water Desalination and Reuse Research Center (WDRC)
Date
2010-08-03Permanent link to this record
http://hdl.handle.net/10754/334614
Metadata
Show full item recordAbstract
The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting. 2010 by the authors; licensee MDPI, Basel, Switzerland.Citation
Goosen M, Mahmoudi H, Ghaffour N (2010) Water Desalination Using Geothermal Energy. Energies 3: 1423-1442. doi:10.3390/en3081423.Publisher
MDPI AGJournal
Energiesae974a485f413a2113503eed53cd6c53
10.3390/en3081423
Scopus Count
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Related items
Showing items related by title, author, creator and subject.
-
Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water ReuseWerner, Craig M. (2014-06) [Dissertation]
Advisor: Amy, Gary L.
Committee members: Eppinger, Jörg; Logan, Bruce; Saikaly, PascalWastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater treatment process. The anaerobic electrochemical membrane bioreactor described here integrates a microbial electrolysis cell with a membrane bioreactor using conductive hollow fiber membrane to produce hydrogen gas, treat wastewater and reclaim treated water. The energy recovered as hydrogen gas in this system was sufficient to offset all the electrical energy requirements for operation. The findings from these studies significantly improve the prospects for simultaneous wastewater treatment, energy recovery and water reclamation in a single reactor but challenges such as membrane biofouling and conversion of hydrogen to methane by methanogenesis require further study. -
Mxene-Based Blue Energy Harvesting: A New Pathway To Overcome The Pressing Challenges Of The Water-Energy-Food (Wef) NexusEl-Demellawi, Jehad (2022-03-14) [Poster]
-
Solar Water Splitting: Over 17% Efficiency Stand-Alone Solar Water Splitting Enabled by Perovskite-Silicon Tandem Absorbers (Adv. Energy Mater. 28/2020)Karuturi, Siva Krishna; Shen, Heping; Sharma, Astha; Beck, Fiona J.; Varadhan, Purushothaman; Duong, The; Narangari, Parvathala Reddy; Zhang, Doudou; Wan, Yimao; He, Jr-Hau; Tan, Hark Hoe; Jagadish, Chennupati; Catchpole, Kylie (Advanced Energy Materials, Wiley, 2020-07-28) [Article]Realizing solar-to-hydrogen (STH) efficiencies close to 20% using low-cost semiconductors remains a major step toward accomplishing the practical viability of photoelectrochemical (PEC) hydrogen generation technologies. Dual-absorber tandem cells combining inexpensive semiconductors are a promising strategy to achieve high STH efficiencies at a reasonable cost. Here, a perovskite photovoltaic biased silicon (Si) photoelectrode is demonstrated for highly efficient stand-alone solar water splitting. A p+nn+ -Si/Ti/Pt photocathode is shown to present a remarkable photon-to-current efficiency of 14.1% under biased condition and stability over three days under continuous illumination. Upon pairing with a semitransparent mixed perovskite solar cell of an appropriate bandgap with state-of-the-art performance, an unprecedented 17.6% STH efficiency is achieved for self-driven solar water splitting. Modeling and analysis of the dual-absorber PEC system reveal that further work into replacing the noble-metal catalyst materials with earth-abundant elements and improvement of perovskite fill factor will pave the way for the realization of a low-cost high-efficiency PEC system.