MKK3 Was Involved in Larval Settlement of the Barnacle Amphibalanus amphitrite through Activating the Kinase Activity of p38MAPK
Name:
Article-PLoS_ONE-MKK3_Was_I-2013-07-29.pdf
Size:
1.411Mb
Format:
PDF
Description:
Article - Full Text
Name:
Supplement_1_-_PLoS_ONE-MKK3_Was_I-2013-07-29.tif
Size:
3.679Mb
Format:
TIFF image
Description:
Supplemental File 1
Name:
Supplement_2_-_PLoS_ONE-MKK3_Was_I-2013-07-29.tif
Size:
205.0Kb
Format:
TIFF image
Description:
Supplemental File 2
Name:
Supplement_3_-_PLoS_ONE-MKK3_Was_I-2013-07-29.tif
Size:
159.8Kb
Format:
TIFF image
Description:
Supplemental File 3
Name:
Supplement_4_-_PLoS_ONE-MKK3_Was_I-2013-07-29.tif
Size:
495.9Kb
Format:
TIFF image
Description:
Supplemental File 4
Name:
Supplement_5_-_PLoS_ONE-MKK3_Was_I-2013-07-29.rmvb
Size:
3.980Mb
Format:
Unknown
Description:
Supplemental File 5
Type
ArticleDate
2013-07-29Permanent link to this record
http://hdl.handle.net/10754/334592
Metadata
Show full item recordAbstract
The p38 mitogen-activated protein kinase (p38MAPK) plays a key role in larval settlement of the barnacle Amphibalanus amphitrite. To study the signaling pathway associated with p38MAPK during larval settlement, we sought to identify the upstream kinase of p38MAPK. Three MKKs (MKK3, MKK4 and MKK7) and three MAPKs (p38MAPK, ERK and JNK) in A. amphitrite were cloned and recombinantly expressed in E. coli. Through kinase assays, we found that MKK3, but not MKK4 or MKK7, phosphorylated p38MAPK. Furthermore, MKK3 activity was specific to p38MAPK, as it did not phosphorylate ERK or JNK. To further investigate the functional relationship between MKK3 and p38MAPK in vivo, we studied the localization of phospho-MKK3 (pMKK3) and MKK3 by immunostaining. Consistent with the patterns of p38MAPK and phospho-p38MAPK (pp38MAPK), pMKK3 and MKK3 mainly localized to the antennules of the cyprids. Western blot analysis revealed that pMKK3 levels, like pp38MAPK levels, were elevated at cyprid stage, compared to nauplii and juvenile stages. Moreover, pMKK3 levels increased after treatment with adult barnacle crude extracts, suggesting that MKK3 might mediate the stimulatory effects of adult barnacle extracts on the p38MAPK pathway. © 2013 Zhang et al.Citation
Zhang G, He L-S, Wong YH, Qian P-Y (2013) MKK3 Was Involved in Larval Settlement of the Barnacle Amphibalanus amphitrite through Activating the Kinase Activity of p38MAPK. PLoS ONE 8: e69510. doi:10.1371/journal.pone.0069510.Sponsors
This work was supported by a grant (DY125-15-T-02) from the China Ocean Mineral Resources Research and Development Association (http://www.comra.org), an award from the King Abdullah University of Science and Technology (SA-C0040/UK-C0016; http://www.kaust.edu.sa) and grants (GRF661611, GRF662413 and AoE/P-04/04-II) from the Research Grants Council (http://www.ugc.edu.hk/eng/rgc/index.htm) of the Hong Kong Special Administrative Region. The funders did not contribute to the experimental design, operation or manuscript writing. Additionally, the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Publisher
Public Library of Science (PLoS)Journal
PLoS ONEPubMed ID
23922727PubMed Central ID
PMC3726695ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0069510
Scopus Count
Collections
Publications Acknowledging KAUST SupportRelated articles
- Stress-activated kinase pathway alteration is a frequent event in bladder cancer.
- Authors: Otto KB, Acharya SS, Robinson VL
- Issue date: 2012 Jul-Aug
- Characterization of Arginine Kinase in the Barnacle Amphibalanus Amphitrite and Its Role in the Larval Settlement.
- Authors: Zhang G, Yan GY, Yang XX, Wong YH, Sun J, Zhang Y, He LS, Xu Y, Qian PY
- Issue date: 2016 Jun
- Evidence for the involvement of p38 MAPK activation in barnacle larval settlement.
- Authors: He LS, Xu Y, Matsumura K, Zhang Y, Zhang G, Qi SH, Qian PY
- Issue date: 2012
- Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions.
- Authors: Shen CP, Tsimberg Y, Salvadore C, Meller E
- Issue date: 2004 Sep 20
- Multiple activation mechanisms of p38alpha mitogen-activated protein kinase.
- Authors: Kang YJ, Seit-Nebi A, Davis RJ, Han J
- Issue date: 2006 Sep 8
Related items
Showing items related by title, author, creator and subject.
-
Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOIDZourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inês CR; Willige, Björn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus (eLife, eLife Sciences Publications, Ltd, 2014-06-19) [Article]The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.
-
Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domainsDiaz Galicia, Miriam Escarlet (2018-05) [Thesis]
Advisor: Arold, Stefan T.
Committee members: Mahfouz, Magdy M.; Jaremko, LukaszProtein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains. -
Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activityAltawashi, Azza; Jung, Sung Yun; Liu, Dou; Su, Bing; Qin, Jun (Journal of Biological Chemistry, American Society for Biochemistry & Molecular Biology (ASBMB), 2012-02-28) [Article]Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacitytoformdendritesandsynapsesinculture. Atthebiochemical level,CC2D1Atransduces signals to the cyclic adenosine 3?,5?-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation. 2012 by The American Society for Biochemistry and Molecular Biology, Inc.