Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I
Name:
Article-Proteome_S-Differenti-2011-09-03.pdf
Size:
2.778Mb
Format:
PDF
Description:
Article - Full Text
Type
ArticleKAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionComputational Bioscience Research Center (CBRC)
Date
2011-09-03Online Publication Date
2011-09-03Print Publication Date
2011Permanent link to this record
http://hdl.handle.net/10754/334584
Metadata
Show full item recordAbstract
Background: The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE) followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles.Results: Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles.Conclusion: It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes. © 2011 Chandramouli et al; licensee BioMed Central Ltd.Citation
Chandramouli KH, Soo L, Qian P-Y (2011) Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I. Proteome Science 9: 51. doi:10.1186/1477-5956-9-51.Sponsors
The authors thank Mr. Y Zhang for his technical help in generating the 2-DE gels and Mr. Yue Him Wong for help with RT-PCR. We are also thankful to Dr. On On Lee for critically reviewing the manuscript and Cherry Kwan for proof-reading the manuscript. This study was supported by an award from the King Abdullah University of Science and Technology (SA-C0040/UK-C0016) and a grant from the Research Grants Council of the Hong Kong Special Administrative Region (AoE/P-04/04-II) to P.-Y. Qian.Publisher
Springer NatureJournal
Proteome SciencePubMed ID
21888661PubMed Central ID
PMC3180302ae974a485f413a2113503eed53cd6c53
10.1186/1477-5956-9-51
Scopus Count
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/2.0/
Related articles
- Phosphoproteome analysis during larval development and metamorphosis in the spionid polychaete Pseudopolydora vexillosa.
- Authors: Chandramouli KH, Mok FS, Wang H, Qian PY
- Issue date: 2011 May 25
- Proteomic analysis during larval development and metamorphosis of the spionid polychaete Pseudopolydora vexillosa.
- Authors: Mok FS, Thiyagarajan V, Qian PY
- Issue date: 2009 Dec 14
- Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete Pseudopolydora vexillosa.
- Authors: Chandramouli KH, Sun J, Mok FS, Liu L, Qiu JW, Ravasi T, Qian PY
- Issue date: 2013 Mar 1
- 2D gel-based multiplexed proteomic analysis during larval development and metamorphosis of the biofouling polychaete tubeworm Hydroides elegans.
- Authors: Zhang Y, Sun J, Xiao K, Arellano SM, Thiyagarajan V, Qian PY
- Issue date: 2010 Sep 3
- Proteomic identification of differentially expressed and phosphorylated proteins in epidermis involved in larval-pupal metamorphosis of Helicoverpa armigera.
- Authors: Fu Q, Liu PC, Wang JX, Song QS, Zhao XF
- Issue date: 2009 Dec 12
Related items
Showing items related by title, author, creator and subject.
-
ProDis-ContSHC: Learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrievalWang, Jim Jing-Yan; Gao, Xin; Wang, Quanquan; Li, Yongping (BMC Bioinformatics, Springer Nature, 2012-05-08) [Article]Background: The need to retrieve or classify protein molecules using structure or sequence-based similarity measures underlies a wide range of biomedical applications. Traditional protein search methods rely on a pairwise dissimilarity/similarity measure for comparing a pair of proteins. This kind of pairwise measures suffer from the limitation of neglecting the distribution of other proteins and thus cannot satisfy the need for high accuracy of the retrieval systems. Recent work in the machine learning community has shown that exploiting the global structure of the database and learning the contextual dissimilarity/similarity measures can improve the retrieval performance significantly. However, most existing contextual dissimilarity/similarity learning algorithms work in an unsupervised manner, which does not utilize the information of the known class labels of proteins in the database.Results: In this paper, we propose a novel protein-protein dissimilarity learning algorithm, ProDis-ContSHC. ProDis-ContSHC regularizes an existing dissimilarity measure dij by considering the contextual information of the proteins. The context of a protein is defined by its neighboring proteins. The basic idea is, for a pair of proteins (i, j), if their context N (i) and N (j) is similar to each other, the two proteins should also have a high similarity. We implement this idea by regularizing dij by a factor learned from the context N (i) and N (j). Moreover, we divide the context to hierarchial sub-context and get the contextual dissimilarity vector for each protein pair. Using the class label information of the proteins, we select the relevant (a pair of proteins that has the same class labels) and irrelevant (with different labels) protein pairs, and train an SVM model to distinguish between their contextual dissimilarity vectors. The SVM model is further used to learn a supervised regularizing factor. Finally, with the new Supervised learned Dissimilarity measure, we update the Protein Hierarchial Context Coherently in an iterative algorithm--ProDis-ContSHC.We test the performance of ProDis-ContSHC on two benchmark sets, i.e., the ASTRAL 1.73 database and the FSSP/DALI database. Experimental results demonstrate that plugging our supervised contextual dissimilarity measures into the retrieval systems significantly outperforms the context-free dissimilarity/similarity measures and other unsupervised contextual dissimilarity measures that do not use the class label information.Conclusions: Using the contextual proteins with their class labels in the database, we can improve the accuracy of the pairwise dissimilarity/similarity measures dramatically for the protein retrieval tasks. In this work, for the first time, we propose the idea of supervised contextual dissimilarity learning, resulting in the ProDis-ContSHC algorithm. Among different contextual dissimilarity learning approaches that can be used to compare a pair of proteins, ProDis-ContSHC provides the highest accuracy. Finally, ProDis-ContSHC compares favorably with other methods reported in the recent literature. 2012 Wang et al.; licensee BioMed Central Ltd.
-
The human interactome knowledge base (hint-kb): An integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid techniqueTheofilatos, Konstantinos A.; Dimitrakopoulos, Christos M.; Likothanassis, Spiridon D.; Kleftogiannis, Dimitrios A.; Moschopoulos, Charalampos N.; Alexakos, Christos; Papadimitriou, Stergios; Mavroudi, Seferina P. (Artificial Intelligence Review, Springer Nature, 2013-07-12) [Article]Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about experimentally and computationally detected human PPIs as well as their corresponding annotation data. However, these databases contain many false positive interactions, are partial and only a few of them incorporate data from various sources. To overcome these limitations, we have developed HINT-KB (http://biotools.ceid.upatras.gr/hint-kb/), a knowledge base that integrates data from various sources, provides a user-friendly interface for their retrieval, cal-culatesasetoffeaturesofinterest and computesaconfidence score for every candidate protein interaction. This confidence score is essential for filtering the false positive interactions which are present in existing databases, predicting new protein interactions and measuring the frequency of each true protein interaction. For this reason, a novel machine learning hybrid methodology, called (Evolutionary Kalman Mathematical Modelling—EvoKalMaModel), was used to achieve an accurate and interpretable scoring methodology. The experimental results indicated that the proposed scoring scheme outperforms existing computational methods for the prediction of PPIs.
-
CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure predictionCui, Xuefeng; Lu, Zhiwu; wang, sheng; Wang, Jim Jing-Yan; Gao, Xin (Bioinformatics, Oxford University Press (OUP), 2016-06-15) [Article]Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods.