Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity
Name:
Article-Journal_of-Protein_im-2012.pdf
Size:
4.080Mb
Format:
PDF
Description:
Article - Full Text
Name:
Supplement_1-Journal_of-Protein_im-2012.pdf
Size:
378.5Kb
Format:
PDF
Description:
Supplemental File 1
Name:
Supplement_2-Journal_of-Protein_im-2012.pdf
Size:
274.8Kb
Format:
PDF
Description:
Supplemental File 2
Type
ArticleDate
2012-02-28Online Publication Date
2012-02-28Print Publication Date
2012-04-27Permanent link to this record
http://hdl.handle.net/10754/334571
Metadata
Show full item recordAbstract
Mutation of the coiled-coil and C2 domain-containing 1A (CC2D1A) gene, which encodes a C2 domain and DM14 domain-containing protein, has been linked to severe autosomal recessive nonsyndromic mental retardation. Using a mouse model that produces a truncated form of CC2D1A that lacks the C2 domain and three of the four DM14 domains, we show that CC2D1A is important for neuronal differentiation and brain development. CC2D1A mutant neurons are hypersensitive to stress and have a reduced capacitytoformdendritesandsynapsesinculture. Atthebiochemical level,CC2D1Atransduces signals to the cyclic adenosine 3?,5?-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit to the nucleus is also defective in CC2D1A mutant cells. Consistently, phosphorylation of the PKA target cAMP-responsive element-binding protein, at serine 133, is nearly abolished in CC2D1A mutant cells. The defects in cAMP/PKA signaling were observed in fibroblast, macrophage, and neuronal primary cells derived from the CC2D1A KO mice. CC2D1A associates with the cAMP-PKA complex following forskolin treatment and accumulates in vesicles or on the plasma membrane in wild-type cells, suggesting that CC2D1A may recruit the PKA complex to the membrane to facilitate signal transduction. Together, our data show that CC2D1A is an important regulator of the cAMP/PKA signaling pathway, which may be the underlying cause for impaired mental function in nonsyndromic mental retardation patients with CC2D1A mutation. 2012 by The American Society for Biochemistry and Molecular Biology, Inc.Citation
Al-Tawashi A, Jung SY, Liu D, Su B, Qin J (2012) Protein Implicated in Nonsyndromic Mental Retardation Regulates Protein Kinase A (PKA) Activity. Journal of Biological Chemistry 287: 14644-14658. doi:10.1074/jbc.M111.261875.Journal
Journal of Biological ChemistryPubMed ID
22375002PubMed Central ID
PMC3340277ae974a485f413a2113503eed53cd6c53
10.1074/jbc.M111.261875
Scopus Count
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Author's Choice—Final version full access. Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles
Related articles
- Cc2d1a, a C2 domain containing protein linked to nonsyndromic mental retardation, controls functional maturation of central synapses.
- Authors: Zhao M, Raingo J, Chen ZJ, Kavalali ET
- Issue date: 2011 Apr
- Phosphodiesterase activity is regulated by CC2D1A that is implicated in non-syndromic intellectual disability.
- Authors: Al-Tawashi A, Gehring C
- Issue date: 2013 Jul 4
- Male-Specific cAMP Signaling in the Hippocampus Controls Spatial Memory Deficits in a Mouse Model of Autism and Intellectual Disability.
- Authors: Zamarbide M, Mossa A, Muñoz-Llancao P, Wilkinson MK, Pond HL, Oaks AW, Manzini MC
- Issue date: 2019 May 1
- Cc2d1a Loss of Function Disrupts Functional and Morphological Development in Forebrain Neurons Leading to Cognitive and Social Deficits.
- Authors: Oaks AW, Zamarbide M, Tambunan DE, Santini E, Di Costanzo S, Pond HL, Johnson MW, Lin J, Gonzalez DM, Boehler JF, Wu GK, Klann E, Walsh CA, Manzini MC
- Issue date: 2017 Feb 1
- Conditional Deletion of CC2D1A Reduces Hippocampal Synaptic Plasticity and Impairs Cognitive Function through Rac1 Hyperactivation.
- Authors: Yang CY, Yu TH, Wen WL, Ling P, Hsu KS
- Issue date: 2019 Jun 19
Related items
Showing items related by title, author, creator and subject.
-
ProDis-ContSHC: Learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrievalWang, Jim Jing-Yan; Gao, Xin; Wang, Quanquan; Li, Yongping (BMC Bioinformatics, Springer Nature, 2012-05-08) [Article]Background: The need to retrieve or classify protein molecules using structure or sequence-based similarity measures underlies a wide range of biomedical applications. Traditional protein search methods rely on a pairwise dissimilarity/similarity measure for comparing a pair of proteins. This kind of pairwise measures suffer from the limitation of neglecting the distribution of other proteins and thus cannot satisfy the need for high accuracy of the retrieval systems. Recent work in the machine learning community has shown that exploiting the global structure of the database and learning the contextual dissimilarity/similarity measures can improve the retrieval performance significantly. However, most existing contextual dissimilarity/similarity learning algorithms work in an unsupervised manner, which does not utilize the information of the known class labels of proteins in the database.Results: In this paper, we propose a novel protein-protein dissimilarity learning algorithm, ProDis-ContSHC. ProDis-ContSHC regularizes an existing dissimilarity measure dij by considering the contextual information of the proteins. The context of a protein is defined by its neighboring proteins. The basic idea is, for a pair of proteins (i, j), if their context N (i) and N (j) is similar to each other, the two proteins should also have a high similarity. We implement this idea by regularizing dij by a factor learned from the context N (i) and N (j). Moreover, we divide the context to hierarchial sub-context and get the contextual dissimilarity vector for each protein pair. Using the class label information of the proteins, we select the relevant (a pair of proteins that has the same class labels) and irrelevant (with different labels) protein pairs, and train an SVM model to distinguish between their contextual dissimilarity vectors. The SVM model is further used to learn a supervised regularizing factor. Finally, with the new Supervised learned Dissimilarity measure, we update the Protein Hierarchial Context Coherently in an iterative algorithm--ProDis-ContSHC.We test the performance of ProDis-ContSHC on two benchmark sets, i.e., the ASTRAL 1.73 database and the FSSP/DALI database. Experimental results demonstrate that plugging our supervised contextual dissimilarity measures into the retrieval systems significantly outperforms the context-free dissimilarity/similarity measures and other unsupervised contextual dissimilarity measures that do not use the class label information.Conclusions: Using the contextual proteins with their class labels in the database, we can improve the accuracy of the pairwise dissimilarity/similarity measures dramatically for the protein retrieval tasks. In this work, for the first time, we propose the idea of supervised contextual dissimilarity learning, resulting in the ProDis-ContSHC algorithm. Among different contextual dissimilarity learning approaches that can be used to compare a pair of proteins, ProDis-ContSHC provides the highest accuracy. Finally, ProDis-ContSHC compares favorably with other methods reported in the recent literature. 2012 Wang et al.; licensee BioMed Central Ltd.
-
The human interactome knowledge base (hint-kb): An integrative human protein interaction database enriched with predicted protein–protein interaction scores using a novel hybrid techniqueTheofilatos, Konstantinos A.; Dimitrakopoulos, Christos M.; Likothanassis, Spiridon D.; Kleftogiannis, Dimitrios A.; Moschopoulos, Charalampos N.; Alexakos, Christos; Papadimitriou, Stergios; Mavroudi, Seferina P. (Artificial Intelligence Review, Springer Nature, 2013-07-12) [Article]Proteins are the functional components of many cellular processes and the identification of their physical protein–protein interactions (PPIs) is an area of mature academic research. Various databases have been developed containing information about experimentally and computationally detected human PPIs as well as their corresponding annotation data. However, these databases contain many false positive interactions, are partial and only a few of them incorporate data from various sources. To overcome these limitations, we have developed HINT-KB (http://biotools.ceid.upatras.gr/hint-kb/), a knowledge base that integrates data from various sources, provides a user-friendly interface for their retrieval, cal-culatesasetoffeaturesofinterest and computesaconfidence score for every candidate protein interaction. This confidence score is essential for filtering the false positive interactions which are present in existing databases, predicting new protein interactions and measuring the frequency of each true protein interaction. For this reason, a novel machine learning hybrid methodology, called (Evolutionary Kalman Mathematical Modelling—EvoKalMaModel), was used to achieve an accurate and interpretable scoring methodology. The experimental results indicated that the proposed scoring scheme outperforms existing computational methods for the prediction of PPIs.
-
CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure predictionCui, Xuefeng; Lu, Zhiwu; wang, sheng; Wang, Jim Jing-Yan; Gao, Xin (Bioinformatics, Oxford University Press (OUP), 2016-06-15) [Article]Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods.