Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes
Name:
Article-Current_Bi-Regenerant-2011.pdf
Size:
976.5Kb
Format:
PDF
Description:
Article - Full Text
Type
ArticleAuthors
Jiang, CaifuMithani, Aziz
Gan, Xiangchao
Belfield, Eric J.
Klingler, John

Zhu, Jian-Kang

Ragoussis, Jiannis
Mott, Richard
Harberd, Nicholas P.
KAUST Department
Center for Desert AgricultureCompetitive Research Funds
GCR - New Progs, Collab & PreAward Admin
Plant Stress Genomics Research Lab
Date
2011-08-02Online Publication Date
2011-08-02Print Publication Date
2011-08Permanent link to this record
http://hdl.handle.net/10754/334570
Metadata
Show full item recordAbstract
Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.Citation
Jiang C, Mithani A, Gan X, Belfield EJ, Klingler JP, et al. (2011) Regenerant Arabidopsis Lineages Display a Distinct Genome-Wide Spectrum of Mutations Conferring Variant Phenotypes. Current Biology 21: 1385-1390. doi:10.1016/j.cub.2011.07.002.Publisher
Elsevier BVJournal
Current BiologyPubMed ID
21802297PubMed Central ID
PMC3162137ae974a485f413a2113503eed53cd6c53
10.1016/j.cub.2011.07.002
Scopus Count
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as Open Access funded by Wellcome Trust
Related articles
- Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing.
- Authors: Miyao A, Nakagome M, Ohnuma T, Yamagata H, Kanamori H, Katayose Y, Takahashi A, Matsumoto T, Hirochika H
- Issue date: 2012 Jan
- Tissue culture-induced heritable genomic variation in rice, and their phenotypic implications.
- Authors: Zhang D, Wang Z, Wang N, Gao Y, Liu Y, Wu Y, Bai Y, Zhang Z, Lin X, Dong Y, Ou X, Xu C, Liu B
- Issue date: 2014
- Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana.
- Authors: Belfield EJ, Gan X, Mithani A, Brown C, Jiang C, Franklin K, Alvey E, Wibowo A, Jung M, Bailey K, Kalwani S, Ragoussis J, Mott R, Harberd NP
- Issue date: 2012 Jul
- Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures.
- Authors: Lu Z, Cui J, Wang L, Teng N, Zhang S, Lam HM, Zhu Y, Xiao S, Ke W, Lin J, Xu C, Jin B
- Issue date: 2021 May 25
- Analysis of somaclonal variation in transgenic and regenerated plants of Arabidopsis thaliana using methylation related metAFLP and TMD markers.
- Authors: Coronel CJ, González AI, Ruiz ML, Polanco C
- Issue date: 2018 Jan
Related items
Showing items related by title, author, creator and subject.
-
Multiplex Isothermal Amplification Coupled with Nanopore Sequencing for Rapid Detection and Mutation Surveillance of SARS-CoV-2Bi, Chongwei; Ramos Mandujano, Gerardo; Hala, Sharif; Xu, Jinna; Mfarrej, Sara; Alofi, Fadwa S; Khogeer, Asim; Hashem, Anwar M; Almontashiri, Naif A.M.; Pain, Arnab; Li, Mo (Cold Spring Harbor Laboratory, 2020-06-14) [Preprint]Molecular testing and surveillance of the spread and mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are critical public health measures to combat the pandemic. There is an urgent need for methods that can rapidly detect and sequence SARS-CoV-2 simultaneously. Here we describe a method for multiplex isothermal amplification of the SARS-CoV-2 genome in 20 minutes. Based on this, we developed NIRVANA (Nanopore sequencing of Isothermal Rapid Viral Amplification for Near real-time Analysis) to detect viral sequences and monitor mutations in multiple regions of SARS-CoV-2 genome for up to 96 patients at a time. NIRVANA uses a newly developed algorithm for on-the-fly data analysis during Nanopore sequencing. The whole workflow can be completed in as short as 3.5 hours, and all reactions can be done in a simple heating block. NIRVANA provides a rapid field-deployable solution of SARS-CoV-2 detection and surveillance of pandemic strains.
-
Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasitesHunt, Paul; Martinelli, Axel; Modrzynska, Katarzyna; Borges, Sofia; Creasey, Alison; Rodrigues, Louise; Beraldi, Dario; Loewe, Laurence; Fawcett, Richard; Kumar, Sujai; Thomson, Marian; Trivedi, Urmi; Otto, Thomas D; Pain, Arnab; Blaxter, Mark; Cravo, Pedro (BMC Genomics, Springer Nature, 2010-09-16) [Article]Background: Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum.Results: A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (IlluminaSolexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme.Conclusions: This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. 2010 Hunt et al; licensee BioMed Central Ltd.
-
Simultaneous Detection and Mutation Surveillance of SARS-CoV-2 and co-infections of multiple respiratory viruses by Rapid field-deployable sequencing.Bi, Chongwei; Ramos Mandujano, Gerardo; Tian, Yeteng; Hala, Sharif; Xu, Jinna; Mfarrej, Sara; Esteban, Concepcion Rodriguez; Delicado, Estrella Nuñez; Alofi, Fadwa S; Khogeer, Asim; Hashem, Anwar M; Almontashiri, Naif A M; Pain, Arnab; Izpisua Belmonte, Juan Carlos; Li, Mo (Med, Elsevier BV, 2021-04-01) [Article]BackgroundStrategies for monitoring the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are crucial for combating the pandemic. Detection and mutation surveillance of SARS-CoV-2 and other respiratory viruses require separate and complex workflows that rely on highly-specialized facilities, personnel, and reagents. To date, no method can rapidly diagnose multiple viral infections and determine variants in a high-throughput manner.MethodsWe describe a method for multiplex isothermal amplification-based sequencing and real-time analysis of multiple viral genomes, termed NIRVANA. It can simultaneously detect SARS-CoV-2, influenza A, human adenovirus, and human coronavirus, and monitor mutations for up to 96 samples in real-time.FindingsNIRVANA showed high sensitivity and specificity for SARS-CoV-2 in 70 clinical samples with a detection limit of 20 viral RNA copies per μl of extracted nucleic acid. It also detected the influenza A co-infection in two samples. The variant analysis results of SARS-CoV-2 positive samples mirror the epidemiology of COVID-19. Additionally, NIRVANA could simultaneously detect SARS-CoV-2 and PMMoV (an omnipresent virus and water quality indicator) in municipal wastewater samples.ConclusionsNIRVANA provides high-confidence detection of both SARS-CoV-2 and other respiratory viruses and mutation surveillance of SARS-CoV-2 on the fly. We expect it to offer a promising solution for rapid field-deployable detection and mutational surveillance of pandemic viruses.FundingM.L. is supported by KAUST Office of Sponsored Research (BAS/1/1080-01). This work is supported by KAUST Competitive Research Grant (URF/1/3412-01-01, M.L. and J.C.I.B.) and Universidad Catolica San Antonio de Murcia (J.C.I.B.). A.M.H. is supported by Saudi Ministry of Education (project 436).