Simple Fall Criteria for MEMS Sensors: Data Analysis and Sensor Concept
Name:
Article-Sensors_(S-Simple_fal-2014.pdf
Size:
1.037Mb
Format:
PDF
Description:
Article - Full Text
Type
Conference PaperArticle
Date
2015-01-13Permanent link to this record
http://hdl.handle.net/10754/334567
Metadata
Show full item recordAbstract
This paper presents a new and simple fall detection concept based on detailed experimental data of human falling and Activities of Daily Living (ADL). Establishing appropriate fall algorithms compatible with MEMS sensors requires detailed data on falls and ADL that indicate clearly the variations of the kinematics at the possible sensor node location on the human body, such as hip, head, and chest. Currently, there is a lack of data on the exact direction and magnitude of each acceleration component associated with these node locations. This is crucial for MEMS structures, which have inertia elements very close to the substrate and are capacitively biased, and hence, are very sensitive to the direction of motion whether it is toward or away from the substrate. This work presents detailed data of the acceleration components on various locations on the human body during various kinds of falls and ADL. An algorithm for fall detection based on MEMS switches is then established. A new sensing concept based on the algorithm is proposed. The concept is based on employing several inertia sensors, which are triggered simultaneously, as electrical switches connected in series, upon receiving a true fall signal. In the case of everyday life activities, some or no switches will be triggered resulting in an open circuit configuration, thereby preventing false positive. Lumped-parameter model is presented for the device and preliminary simulation results are presented illustrating the new device concept.Citation
Ibrahim, A. I., & Younis, M. I. (2014). Simple Fall Criteria for MEMS Sensors: Data Analysis and Sensor Concept. Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control. doi:10.1115/detc2014-34920Publisher
ASME InternationalJournal
Volume 6: 10th International Conference on Multibody Systems, Nonlinear Dynamics, and ControlConference/Event name
ASME 2014 International Design Engineering Technical Conferences &Computers and Information in Engineering Conference ( IDETC/CIE 2014)ISBN
9780791846391PubMed ID
25006997PubMed Central ID
PMC4168415Additional Links
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings/IDETC-CIE2014/46391/Buffalo,%20New%20York,%20USA/254506ae974a485f413a2113503eed53cd6c53
10.1115/detc2014-34920
Scopus Count
The following license files are associated with this item:
Related articles
- Portable preimpact fall detector with inertial sensors.
- Authors: Wu G, Xue S
- Issue date: 2008 Apr
- Dynamic Bayesian networks for context-aware fall risk assessment.
- Authors: Koshmak G, Linden M, Loutfi A
- Issue date: 2014 May 23
- Direction sensitive fall detection using a triaxial accelerometer and a barometric pressure sensor.
- Authors: Tolkiehn M, Atallah L, Lo B, Yang GZ
- Issue date: 2011
- Falls event detection using triaxial accelerometry and barometric pressure measurement.
- Authors: Bianchi F, Redmond SJ, Narayanan MR, Cerutti S, Celler BG, Lovell NH
- Issue date: 2009
- Multimodal sensor-based fall detection within the domestic environment of elderly people.
- Authors: Feldwieser F, Gietzelt M, Goevercin M, Marschollek M, Meis M, Winkelbach S, Wolf KH, Spehr J, Steinhagen-Thiessen E
- Issue date: 2014 Dec