The five Ws (and one H) of super-hydrophobic surfaces in medicine
Name:
Article-Micromachi-The_five_W-2014-05-05.pdf
Size:
5.718Mb
Format:
PDF
Description:
Article - Full Text
Type
ArticleKAUST Department
Material Science and Engineering ProgramPhysical Science and Engineering (PSE) Division
Date
2014-05-05Permanent link to this record
http://hdl.handle.net/10754/334548
Metadata
Show full item recordAbstract
Super-hydrophobic surfaces (SHSs) are bio-inspired, artificial microfabricated interfaces, in which a pattern of cylindrical micropillars is modified to incorporate details at the nanoscale. For those systems, the integration of different scales translates into superior properties, including the ability of manipulating biological solutions. The five Ws, five Ws and one H or the six Ws (6W), are questions, whose answers are considered basic in information-gathering. They constitute a formula for getting the complete story on a subject. According to the principle of the six Ws, a report can only be considered complete if it answers these questions starting with an interrogative word: who, why, what, where, when, how. Each question should have a factual answer. In what follows, SHSs and some of the most promising applications thereof are reviewed following the scheme of the 6W. We will show how these surfaces can be integrated into bio-photonic devices for the identification and detection of a single molecule. We will describe how SHSs and nanoporous silicon matrices can be combined to yield devices with the capability of harvesting small molecules, where the cut-off size can be adequately controlled. We will describe how this concept is utilized for obtaining a direct TEM image of a DNA molecule. 2014 by the authors; licensee MDPI, Basel, Switzerland.Citation
Gentile F, Coluccio M, Limongi T, Perozziello G, Candeloro P, et al. (2014) The Five Ws (and one H) of Super-Hydrophobic Surfaces in Medicine. Micromachines 5: 239-262. doi:10.3390/mi5020239.Publisher
MDPI AGJournal
Micromachinesae974a485f413a2113503eed53cd6c53
10.3390/mi5020239
Scopus Count
The following license files are associated with this item:
Except where otherwise noted, this item's license is described as This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Related items
Showing items related by title, author, creator and subject.
-
Excitonic Coupling in Linear and Trefoil Trimer Perylenediimide Molecules Probed by Single-Molecule SpectroscopyYoo, Hyejin; Furumaki, Shu; Yang, Jaesung; Lee, Ji-Eun; Chung, Heejae; Oba, Tatsuya; Kobayashi, Hiroyuki; Rybtchinski, Boris; Wilson, Thea M.; Wasielewski, Michael R.; Vacha, Martin; Kim, Dongho (The Journal of Physical Chemistry B, American Chemical Society (ACS), 2012-10-11) [Article]Perylenediimide (PDI) molecules are promising building blocks for photophysical studies of electronic interactions within multichromophore arrays. Such PDI arrays are important materials for fabrication of molecular nanodevices such as organic light-emitting diodes, organic semiconductors, and biosensors because of their high photostability, chemical and physical inertness, electron affinity, and high tinctorial strength over the entire visible spectrum. In this work, PDIs have been organized into linear (L3) and trefoil (T3) trimer molecules and investigated by single-molecule fluorescence microscopy to probe the relationship between molecular structures and interchromophoric electronic interactions. We found a broad distribution of coupling strengths in both L3 and T3 and hence strong/weak coupling between PDI units by monitoring spectral peak shifts in single-molecule fluorescence spectra upon sequential photobleaching of each constituent chromophore. In addition, we used a wide-field defocused imaging technique to resolve heterogeneities in molecular structures of L3 and T3 embedded in a PMMA polymer matrix. A systematic comparison between the two sets of experimental results allowed us to infer the correlation between intermolecular interactions and molecular structures. Our results show control of the PDI intermolecular interactions using suitable multichromophoric structures. © 2012 American Chemical Society.
-
Remarkable Enhancement of the Hole Mobility in Several Organic Small-Molecules, Polymers, and Small-Molecule:Polymer Blend Transistors by Simple Admixing of the Lewis Acid p-Dopant B(C6F5)3Panidi, Julianna; Paterson, Alexandra F.; Khim, Dongyoon; Fei, Zhuping; Han, Yang; Tsetseris, Leonidas; Vourlias, George; Patsalas, Panos A.; Heeney, Martin; Anthopoulos, Thomas D. (Advanced Science, Wiley, 2017-10-05) [Article]Improving the charge carrier mobility of solution-processable organic semiconductors is critical for the development of advanced organic thin-film transistors and their application in the emerging sector of printed electronics. Here, a simple method is reported for enhancing the hole mobility in a wide range of organic semiconductors, including small-molecules, polymers, and small-molecule:polymer blends, with the latter systems exhibiting the highest mobility. The method is simple and relies on admixing of the molecular Lewis acid B(C6F5)(3) in the semiconductor formulation prior to solution deposition. Two prototypical semiconductors where B(C6F5)(3) is shown to have a remarkable impact are the blends of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene:poly(triarylamine) (diF-TESADT:PTAA) and 2,7-dioctyl[1]-benzothieno[3,2-b][1]benzothiophene:poly(indacenodithiophene-co-benzothiadiazole) (C8-BTBT:C16-IDTBT), for which hole mobilities of 8 and 11 cm(2) V-1 s(-1), respectively, are obtained. Doping of the 6,13-bis(triisopropylsilylethynyl)pentacene:PTAA blend with B(C6F5)(3) is also shown to increase the maximum hole mobility to 3.7 cm(2) V-1 s(-1). Analysis of the single and multicomponent materials reveals that B(C6F5)(3) plays a dual role, first acting as an efficient p-dopant, and secondly as a microstructure modifier. Semiconductors that undergo simultaneous p-doping and dopant-induced long-range crystallization are found to consistently outperform transistors based on the pristine materials. Our work underscores Lewis acid doping as a generic strategy towards high performance printed organic microelectronics.
-
Influence of polymerization among Al- and Ga-containing molecules on growth rate and Al content in AlGaNOhkawa, Kazuhiro; Nakamura, Kenichi; Hirako, Akira; Iida, Daisuke (Journal of Crystal Growth, Elsevier BV, 2019-03-22) [Article]AlGaN metalorganic vapor-phase epitaxial growth simulation in a TMAl/TMGa/NH3/H2 system was studied to explain its growth rate and Al content. We proposed three kinds of Al- and Ga-containing polymers in this system. By using those polymers, we got good agreements in pressure, TMAl/(TMAl+TMGa) inlet ratio, and temperature dependences of AlGaN growth rate and its Al content between simulations and experiments, even at pressures higher than 40 kPa. Our results showed that the formation of these polymers is enhanced under higher pressures. The simulation considering those polymers could explain the linearity in the TMAl/(TMAl+TMGa) inlet ratio dependences of growth rate and Al content at lower pressure and their non-linearity at higher pressure.