Show simple item record

dc.contributor.authorPeng, H.Y.
dc.contributor.authorPu, L.
dc.contributor.authorWu, J.C.
dc.contributor.authorCha, Dong Kyu
dc.contributor.authorHong, J.H.
dc.contributor.authorLin, W.N.
dc.contributor.authorLi, Yangyang
dc.contributor.authorDing, Junfeng
dc.contributor.authorMuller, David A.
dc.contributor.authorLi, K.
dc.contributor.authorWu, Tao
dc.date.accessioned2014-11-11T14:28:59Z
dc.date.available2014-11-11T14:28:59Z
dc.date.issued2013-11-13
dc.identifier.citationPeng HY, Pu L, Wu JC, Cha D, Hong JH, et al. (2013) Effects of electrode material and configuration on the characteristics of planar resistive switching devices. APL Materials 1: 052106. doi:10.1063/1.4827597.
dc.identifier.issn2166532X
dc.identifier.doi10.1063/1.4827597
dc.identifier.urihttp://hdl.handle.net/10754/334540
dc.description.abstractWe report that electrode engineering, particularly tailoring the metal work function, measurement configuration and geometric shape, has significant effects on the bipolar resistive switching (RS) in lateral memory devices based on self-doped SrTiO3 (STO) single crystals. Metals with different work functions (Ti and Pt) and their combinations are used to control the junction transport (either ohmic or Schottky-like). We find that the electric bias is effective in manipulating the concentration of oxygen vacancies at the metal/STO interface, influencing the RS characteristics. Furthermore, we show that the geometric shapes of electrodes (e.g., rectangular, circular, or triangular) affect the electric field distribution at the metal/oxide interface, thus plays an important role in RS. These systematic results suggest that electrode engineering should be deemed as a powerful approach toward controlling and improving the characteristics of RS memories. 2013 Author(s).
dc.language.isoen
dc.publisherAIP Publishing
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/
dc.titleEffects of electrode material and configuration on the characteristics of planar resistive switching devices
dc.typeArticle
dc.contributor.departmentAdvanced Nanofabrication, Imaging and Characterization Core Lab
dc.contributor.departmentImaging and Characterization Core Lab
dc.contributor.departmentLaboratory of Nano Oxides for Sustainable Energy
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalAPL Materials
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionDivision of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
dc.contributor.institutionAdvanced LSI Technology Laboratory, Corporate Research and Development Center, Toshiba Corporation, Kawasaki 212-8582, Japan
dc.contributor.institutionKey Laboratory of Radiation Physics and Technology, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)
kaust.personCha, Dong Kyu
kaust.personDing, Junfeng
kaust.personWu, Tao
kaust.personHong, J. H.
kaust.personLi, Yangyang
kaust.personLi, K.
refterms.dateFOA2018-06-13T15:49:18Z
dc.date.published-online2013-11-13
dc.date.published-print2013-11


Files in this item

Thumbnail
Name:
Article-APL_Materi-Effects_of-2013-11-13.pdf
Size:
871.3Kb
Format:
PDF
Description:
Article - Full Text
Thumbnail
Name:
Supplemetary_materials.doc
Size:
179.5Kb
Format:
Microsoft Word
Description:
Supplemental File 1

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by/3.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/3.0/