A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

Abstract
We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

Citation
Zheng L-Y, Wu Y, Zhang X-L, Ni X, Chen Z-G, et al. (2013) A new type of artificial structure to achieve broadband omnidirectional acoustic absorption. AIP Advances 3: 102122. doi:10.1063/1.4826610.

Publisher
AIP Publishing

Journal
AIP Advances

DOI
10.1063/1.4826610

Permanent link to this record