Show simple item record

dc.contributor.authorThoraval, M.-J.
dc.contributor.authorTakehara, K.
dc.contributor.authorEtoh, T.G.
dc.contributor.authorThoroddsen, Sigurdur T
dc.date.accessioned2014-11-11T14:27:41Z
dc.date.available2014-11-11T14:27:41Z
dc.date.issued2013-04-29
dc.identifier.citationThoraval M-J, Takehara K, Etoh TG, Thoroddsen ST (2013) Drop impact entrapment of bubble rings. J Fluid Mech 724: 234-258. doi:10.1017/jfm.2013.147.
dc.identifier.issn00221120
dc.identifier.doi10.1017/jfm.2013.147
dc.identifier.urihttp://hdl.handle.net/10754/334508
dc.description.abstractWe use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, article 264506). These dynamics mainly occur within 50 -s after the first contact, requiring imaging at 1 million f.p.s. For a water drop impacting on a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Reynolds number Re above -12 000, up to 10 partial bubble rings have been observed at the base of the ejecta, starting when the contact is -20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into micro-bubbles. The different refractive index in the pool liquid reveals the destabilization of the vortices and the formation of streamwise vortices and intricate vortex tangles. Fine-scale axisymmetry is thereby destroyed. We show also that the shape of the drop has a strong influence on these dynamics. 2013 Cambridge University Press.
dc.language.isoen
dc.publisherCambridge University Press (CUP)
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/
dc.subjectbreakup/coalescence
dc.subjectdrops and bubbles
dc.subjectAzimuthal instability
dc.subjectBreakup/coalescence
dc.subjectDrops and bubbles
dc.subjectHigh-impact velocities
dc.subjectIsolated bubbles
dc.subjectLow-impact velocity
dc.subjectStreamwise vortices
dc.subjectUltra high speed
dc.subjectLakes
dc.subjectLiquids
dc.subjectRefractive index
dc.subjectReynolds number
dc.subjectVortex flow
dc.subjectDrops
dc.subjectbubble
dc.subjectcoalescence
dc.subjectdroplet
dc.subjectexperimental study
dc.subjectfluid dynamics
dc.subjectimpact
dc.subjectnumerical model
dc.subjectrefractive index
dc.titleDrop impact entrapment of bubble rings
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentHigh-Speed Fluids Imaging Laboratory
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalJournal of Fluid Mechanics
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionDepartment of Civil and Environmental Engineering, Kinki University, Higashi-Osaka 577-8502, Japan
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)
dc.identifier.arxividarXiv:1211.3076
kaust.personThoraval, Marie-Jean
kaust.personThoroddsen, Sigurdur T.
refterms.dateFOA2018-06-14T07:16:45Z
dc.date.published-online2013-04-29
dc.date.published-print2013-06


Files in this item

Thumbnail
Name:
Article-Journal_of-Drop_impac-2013-04-29.pdf
Size:
4.951Mb
Format:
PDF
Description:
Article - Full Text
Thumbnail
Name:
flm724avi-mp4_supp_movies.zip
Size:
42.73Mb
Format:
Unknown
Description:
All Supplemental Video Files

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-sa/3.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-sa/3.0/