Recent Submissions

  • The doubly conditioned frequency spectrum does not distinguish between ancient population structure and hybridization

    Eriksson, Anders; Manica, Andrea (Molecular Biology and Evolution, Oxford University Press (OUP), 2014-03-13) [Article]
    Distinguishing between hybridization and population structure in the ancestral species is a key challenge in our understanding of how permeable species boundaries are to gene flow. The doubly conditioned frequency spectrum (dcfs) has been argued to be a powerful metric to discriminate between these two explanations, and it was used to argue for hybridization between Neandertal and anatomically modern humans. The shape of the observed dcfs for these two species cannot be reproduced by a model that represents ancient population structure in Africa with two populations, while adding hybridization produces realistic shapes. In this letter, we show that this result is a consequence of the spatial coarseness of the demographic model and that a spatially structured stepping stone model can generate realistic dcfs without hybridization. This result highlights how inferences on hybridization between recently diverged species can be strongly affected by the choice of how population structure is represented in the underlying demographic model. We also conclude that the dcfs has limited power in distinguishing between the signals left by hybridization and ancient structure. 2014 The Author.
  • The Effect of Multiple Paternity on Genetic Diversity of Small Populations during and after Colonisation

    Rafajlović, Marina; Eriksson, Anders; Rimark, Anna; Hintz-Saltin, Sara; Charrier, Grégory; Panova, Marina; André, Carl; Johannesson, Kerstin; Mehlig, Bernhard (PLoS ONE, Public Library of Science (PLoS), 2013-10-28) [Article]
    Genetic variation within and among populations is influenced by the genetic content of the founders and the migrants following establishment. This is particularly true if populations are small, migration rate low and habitats arranged in a stepping-stone fashion. Under these circumstances the level of multiple paternity is critical since multiply mated females bring more genetic variation into founder groups than single mated females. One such example is the marine snail Littorina saxatilis that during postglacial times has invaded mainland refuge areas and thereafter small islands emerging due to isostatic uplift by occasional rafting of multiply mated females. We modelled effects of varying degrees of multiple paternity on the genetic variation of island populations colonised by the founders spreading from the mainland, by quantifying the population heterozygosity during both the transient colonisation process, and after a steady state (with migration) has been reached. During colonisation, multiple mating by 2-10 males increased the heterozygosity by 10-300% in comparison with single paternity, while in the steady state the increase was 10-50% compared with single paternity. In the steady state the increase of heterozygosity due to multiple paternity is determined by a corresponding increase in effective population size. During colonisation, by contrast, the increase in heterozygosity is larger and it cannot be explained in terms of the effective population size alone. During the steady-state phase bursts of high genetic variation spread through the system, and far from the mainland this led to short periods of high diversity separated by long periods of low diversity. The size of these fluctuations was boosted by multiple paternity. We conclude that following glacial periods of extirpation, recolonization of isolated habitats by this species has been supported by its high level of multiple paternity. 2013 Rafajlovi? et al.