• Login
    Search 
    •   Home
    • Academic Divisions
    • Physical Sciences & Engineering (PSE)
    • Functional Materials Design, Discovery and Development (FMD3)
    • Search
    •   Home
    • Academic Divisions
    • Physical Sciences & Engineering (PSE)
    • Functional Materials Design, Discovery and Development (FMD3)
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorEddaoudi, Mohamed (14)Belmabkhout, Youssef (8)Adil, Karim (7)Shekhah, Osama (5)Cairns, Amy (4)View MoreDepartmentAdvanced Membranes and Porous Materials Research Center (14)
    Chemical Science Program (14)
    Functional Materials Design, Discovery and Development (FMD3) (14)Physical Sciences and Engineering (PSE) Division (14)Chemical and Biological Engineering Program (1)View MoreJournalJournal of the American Chemical Society (5)Chem. Commun. (3)Angewandte Chemie International Edition (1)Chem. Sci. (1)Chem. Soc. Rev. (1)View MorePublisherRoyal Society of Chemistry (RSC) (7)American Chemical Society (ACS) (6)Wiley-Blackwell (1)Subjecthydrocarbons (1)isoreticular chemistry (1)metal-organic frameworks (1)molecular sieves (1)separation (1)View MoreTypeArticle (14)Year (Issue Date)
    2015 (14)
    Item AvailabilityOpen Access (8)Metadata Only (6)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-10 of 14

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 14CSV
    • 14RefMan
    • 14EndNote
    • 14BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum Based soc-MOF for CH4, O2 and CO2 Storage

    Alezi, Dalal; Belmabkhout, Youssef; Suetin, Mikhail; Bhatt, Prashant; Weselinski, Lukasz Jan; Solovyeva, Vera; Adil, Karim; Spanopoulos, Ioannis; Trikalitis, Pantelis N.; Emwas, Abdul-Hamid M.; Eddaoudi, Mohamed (Journal of the American Chemical Society, American Chemical Society (ACS), 2015-10-07) [Article]
    The molecular building block approach was employed effectively to construct a series of novel isoreticular, highly porous and stable, aluminum based Metal-Organic Frameworks with soc topology. From this platform, three compounds were experimentally isolated and fully characterized, namely, the parent Al-soc-MOF-1 and its naphthalene and anthracene analogues. Al-soc-MOF-1 exhibits outstanding gravimetric methane uptake (total and working capacity). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the challenging Department of Energy dual target of 0.5 g/g (gravimetric) and 264 cm3 (STP)/cm3 (volumetric) methane storage. Furthermore, Al-soc-MOF exhibited the highest total gravimetric and volumetric uptake for carbon dioxide and the utmost total and deliverable uptake for oxygen at relatively high pressures among all microporous MOFs. In order to correlate the MOF pore structure and functionality to the gas storage properties, to better understand the structure-properties relationship, we performed a molecular simulation study and evaluated the methane storage performance of Al-soc-MOF platform using diverse organic linkers. It was found that shortening the parent Al-soc-MOF-1 linker resulted in a noticeable enhancement in the working volumetric capacity at specific temperatures and pressures with amply conserved gravimetric uptake/working capacity. In contrast, further expansion of the organic linker (branches and/or core) led to isostructural Al-soc-MOFs with enhanced gravimetric uptake but noticeably lower volumetric capacity. The collective experimental and simulation studies indicated that the parent Al-soc-MOF-1 exhibits the best compromise between the volumetric and gravimetric total and working uptakes in a wide range of pressure and temperature conditions.
    Thumbnail

    Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins

    Assen, Ayalew Hussen Assen; Belmabkhout, Youssef; Adil, Karim; Bhatt, Prashant; Xue, Dongxu; Jiang, Hao; Eddaoudi, Mohamed (Angewandte Chemie International Edition, Wiley-Blackwell, 2015-10-02) [Article]
    Using isoreticular chemistry allows the design and construction of a new rare-earth metal (RE) fcu-MOF with a suitable aperture size for practical steric adsorptive separations. The judicious choice of a relatively short organic building block, namely fumarate, to bridge the 12-connected RE hexanuclear clusters has afforded the contraction of the well-defined RE-fcu-MOF triangular window aperture, the sole access to the two interconnected octahedral and tetrahedral cages. The newly constructed RE (Y and Tb) fcu-MOF analogues display unprecedented total exclusion of branched paraffins from normal paraffins. The resultant window aperture size of about 4.7 Å, regarded as a sorbate-size cut-off, enabled a complete sieving of branched paraffins from normal paraffins. The results are supported by collective single gas and mixed gas/vapor adsorption and calorimetric studies.
    Thumbnail

    Ag29(BDT)12(TPP)4: A Tetravalent Nanocluster

    AbdulHalim, Lina G.; Bootharaju, Megalamane Siddaramappa; Tang, Qing; Del Gobbo, Silvano; AbdulHalim, Rasha; Eddaoudi, Mohamed; Jiang, De-en; Bakr, Osman (Journal of the American Chemical Society, American Chemical Society (ACS), 2015-07-07) [Article]
    The bottom-up assembly of nanoparticles into diverse ordered solids is a challenge because it requires nanoparticles, which are often quasi-spherical, to have interaction anisotropy akin to atoms and molecules. Typically, anisotropy has been introduced by changing the shape of the inorganic nanoparticle core. Here, we present the design, self-assembly, optical properties and total structural determination of Ag29(BDT)12(TPP)4, an atomically precise tetravalent nanocluster (NC) (BDT: 1,3-benzenedithiols; TPP: triphenylphosphine). It features four unique tetrahedrally symmetrical binding surface sites facilitated by the supramolecular assembly of 12 BDT—wide footprint bidentate thiols—in the ligand shell. When each of these sites was selectively functionalized by a single phosphine ligand, particle stability, synthetic yield and the propensity to self-assemble into macroscopic crystals increased. The solid crystallized NCs have a substantially narrowed optical bandgap compared to that of the solution state, suggesting strong inter-particle electronic coupling occurs in the solid state.
    Thumbnail

    Quest for Highly-connected MOF Platforms: Rare-Earth Polynuclear Clusters Versatility Meets Net Topology Needs.

    Alezi, Dalal; Peedikakkal, Abdul Malik P.; Weselinski, Lukasz Jan; Guillerm, Vincent; Belmabkhout, Youssef; Cairns, Amy; Chen, Zhijie; Wojtas, Lukasz; Eddaoudi, Mohamed (Journal of the American Chemical Society, American Chemical Society (ACS), 2015-04-17) [Article]
    Gaining control over the assembly of highly porous rare-earth (RE) based metal-organic frameworks (MOFs) remains challenging. Here we report the latest discoveries on our continuous quest for highly-connected nets. The topological exploration based on the non-compatibility of 12-connected RE polynuclear carboxylate-based cluster, points of extension matching the 12 vertices of the cuboctahedron (cuo), with 3-connected organic ligands led to the discovery of two fascinating and highly-connected minimal edge-transitive nets, pek and aea. The reduced symmetry of the employed triangular tricarboxylate ligand, as compared to the prototype highly symmetrical 1,3,5-benzene(tris)benzoic acid guided the concurrent occurrence of nonanuclear [RE9(μ3-OH)12(μ3-O)2(O2C–)12] and hexanuclear [RE6(OH)8(O2C–)8] carboxylate-based clusters as 12-connected and 8-connected molecular building blocks in the structure of a 3-periodic pek-MOF based on a novel (3,8,12)-c trinodal net. The use of a tricarboxylate ligand with modified angles between carboxylate moieties led to the formation of a second MOF containing solely nonanuclear clusters and exhibiting once more a novel and a highly-connected (3,12,12)-c trinodal net with aea topology. Notably, it is the first time that RE-MOFs with double six-membered ring (d6R) secondary building units are isolated, representing therefore a critical step forward toward the design of novel and highly coordinated materials using the supermolecular building layer approach while considering the d6Rs as building pillars. Lastly, the potential of these new MOFs for gas separation/storage was investigated by performing gas adsorption studies of various probe gas molecules over a wide range of pressures. Noticeably, pek-MOF-1 showed excellent volumetric CO2 and CH4 uptakes at high pressures.
    Thumbnail

    Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction

    Xue, Dongxu; Belmabkhout, Youssef; Shekhah, Osama; Jiang, Hao; Adil, Karim; Cairns, Amy; Eddaoudi, Mohamed (Journal of the American Chemical Society, American Chemical Society (ACS), 2015-04-10) [Article]
    Reticular chemistry approach was successfully employed to deliberately construct new rare-earth (RE, i.e. Eu3+, Tb3+ and Y3+) fcu metal‒organic frameworks (MOFs) with restricted window apertures. Controlled and selective access to the resultant contracted fcu-MOF pores permits the achievement of the requisite sorbate cut-off ideal for selective adsorption kinetics separation and/or molecular sieving of gases and vapors. Predetermined reaction conditions that permitted the formation in-situ of the 12-connected RE hexanuclear molecular building block (MBB) and the establishment of the RE-fcu-MOF plat-form, especially in the presence of 2-fluorobenzoic acid (2-FBA) as a modulator and a structure directing agent, were used to synthesize isostructural RE-1,4-NDC-fcu-MOFs based on a relatively bulkier 2-connected bridging ligand, namely 1,4-naphthalenedicarboxylate (1,4-NDC). The subsequent RE-1,4-NDC-fcu-MOF structural features, contracted windows/pores and high concentration of open metal sites combined with exceptional hydrothermal and chemical stabilities, yielded nota-ble gas/solvent separation properties, driven mostly by adsorption kinetics as exemplified in this work for n-butane/methane, butanol/methanol and butanol/water pair systems.
    Thumbnail

    Remote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks

    Gao, Wenyang; Cai, Rong; Pham, Tony T.; Forrest, Katherine A.; Hogan, Adam; Nugent, Patrick S.; Williams, Kia R.; Wojtas, Łukasz; Luebke, Ryan; Weselinski, Lukasz Jan; Zaworotko, Michael J.; Space, Brian; Chen, Yusheng; Eddaoudi, Mohamed; Shi, Xiaodong; Ma, Shengqian (Chemistry of Materials, American Chemical Society (ACS), 2015-03-13) [Article]
    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.
    Thumbnail

    Quest for anionic MOF membranes: Continuous sod -ZMOF membrane with Co2 adsorption-driven selectivity

    Almaythalony, Bassem; Shekhah, Osama; Swaidan, Raja; Belmabkhout, Youssef; Pinnau, Ingo; Eddaoudi, Mohamed (Journal of the American Chemical Society, American Chemical Society (ACS), 2015-01-28) [Article]
    We report the fabrication of the first continuous zeolite-like metal-organic framework (ZMOF) thin-film membrane. A pure phase sod-ZMOF, sodalite topology, membrane was grown and supported on a porous alumina substrate using a solvothermal crystallization method. The absence of pinhole defects in the film was confirmed and supported by the occurrence of quantifiable time-lags, for all studied gases, during constant volume/variable pressure permeation tests. For both pure and mixed gas feeds, the sod-ZMOF-1 membrane exhibits favorable permeation selectivity toward carbon dioxide over relevant industrial gases such as H2, N2, and CH4, and it is mainly governed by favorable CO2 adsorption.
    Thumbnail

    Post-assembly transformations of porphyrin-containing metal-organic framework (MOF) films fabricated via automated layer-by-layer coordination

    So, Monica; Beyzavi, M. Hassan; Sawhney, Rohan; Shekhah, Osama; Eddaoudi, Mohamed; Al-Juaid, Salih Salem; Hupp, Joseph T.; Farha, Omar K. (Chem. Commun., Royal Society of Chemistry (RSC), 2015) [Article]
    Herein, we demonstrate the robustness of layer-by-layer (LbL)-assembled, pillared-paddlewheel-type MOF films toward conversion to new or modified MOFs via solvent-assisted linker exchange (SALE) and post-assembly linker metalation. Further, we show that LbL synthesis can afford MOFs that have proven inaccessible through other de novo strategies.
    Thumbnail

    Fabrication and non-covalent modification of highly oriented thin films of a zeolite-like metal-organic framework (ZMOF) with rho topology

    Shekhah, Osama; Cadiau, Amandine; Eddaoudi, Mohamed (CrystEngComm, Royal Society of Chemistry (RSC), 2015) [Article]
    Here we report the fabrication of the first thin film of a zeolite-like metal-organic framework (ZMOF) with rho topology (rho-ZMOF-1, ([In48(HImDC)96]48-)n) in a highly oriented fashion on a gold-functionalized substrate. The oriented rho-ZMOF-1 film was functionalized by non-covalent modification via post-synthetic exchange of different probe molecules, such as acridine yellow, methylene blue, and Nile red. In addition, encapsulation of a porphyrin moiety was achieved via in situ synthesis and construction of the rho-ZMOF. Adsorption kinetics of volatile organic compounds on rho-ZMOF-1 thin films was also investigated. This study suggests that rho-ZMOF-1 thin films can be regarded as a promising platform for various applications such as sensing and catalysis. This journal is
    Thumbnail

    CO2 separation, capture and reuse: A web themed issue

    Eddaoudi, Mohamed; Barbour, Leonard J. (Chem. Commun., Royal Society of Chemistry (RSC), 2015) [Article]
    • 1
    • 2
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.