Show simple item record

dc.contributor.advisorHoteit, Ibrahim
dc.contributor.authorSiripatana, Adil
dc.date.accessioned2014-08-21T05:53:18Z
dc.date.available2014-08-20T00:00:00Z
dc.date.issued2014-08
dc.identifier.citationSiripatana, A. (2014). Bayesian Inference of Manning's n coefficient of a Storm Surge Model: an Ensemble Kalman filter vs. a polynomial chaos-based MCMC. KAUST Research Repository. https://doi.org/10.25781/KAUST-UY76S
dc.identifier.doi10.25781/KAUST-UY76S
dc.identifier.urihttp://hdl.handle.net/10754/325033
dc.description.abstractConventional coastal ocean models solve the shallow water equations, which describe the conservation of mass and momentum when the horizontal length scale is much greater than the vertical length scale. In this case vertical pressure gradients in the momentum equations are nearly hydrostatic. The outputs of coastal ocean models are thus sensitive to the bottom stress terms defined through the formulation of Manning’s n coefficients. This thesis considers the Bayesian inference problem of the Manning’s n coefficient in the context of storm surge based on the coastal ocean ADCIRC model. In the first part if the thesis, we apply an ensemble-based Kalman filter, the singular evolutive interpolated Kalman (SEIK) filter to estimate both a constant Manning’s n coefficient and a 2-D parameterized Manning’s coefficient on one ideal and one of more realistic domain using observation system simulation experiments (OSSEs). We study the sensitivity of the system to the ensemble size. we also access the benefits from using an inflation factor on the filter performance. To study the limitation of the Guassian restricted assumption on the SEIK filter, we also implemented in the second part of this thesis a Markov Chain Monte Carlo (MCMC) method based on a Generalized Polynomial chaos (gPc) approach for the estimation of the 1-D and 2-D Mannning’s n coefficient. The gPc is used to build a surrogate model that imitate the ADCIRC model in order to make the computational cost of implementing the MCMC with the ADCIRC model reasonable. We evaluate the performance of the MCMC-gPc approach and study its robustness to different OSSEs scenario. we also compare its estimates with those resulting from SEIK in term of parameter estimates and full distributions. we present a full analysis of the solution of these two methods, of the contexts of their algorithms, and make recommendation for fully realistic application.
dc.language.isoen
dc.subjectParameter Estimation
dc.subjectBaysian Inference
dc.subjectKalman Filter
dc.subjectPolynomial Chaos
dc.subjectStorm Surge
dc.subjectManning's N Coefficients
dc.titleBayesian Inference of Manning's n coefficient of a Storm Surge Model: an Ensemble Kalman filter vs. a polynomial chaos-based MCMC
dc.typeThesis
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.rights.embargodate2014-08-20
thesis.degree.grantorKing Abdullah University of Science and Technology
dc.contributor.committeememberKnio, Omar
dc.contributor.committeememberSun, Shuyu
thesis.degree.disciplineEarth Science and Engineering
thesis.degree.nameMaster of Science
dc.rights.accessrightsAt the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2014-08-20.
refterms.dateFOA2014-08-20T00:00:00Z


Files in this item

Thumbnail
Name:
Adil Final Thesis 124251.pdf
Size:
8.843Mb
Format:
PDF
Description:
Adil Final Thesis 124251

This item appears in the following Collection(s)

Show simple item record