• Login
    Search 
    •   Home
    • Research
    • Articles
    • Search
    •   Home
    • Research
    • Articles
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorFarooq, Aamir (31)Sarathy, Mani (13)Badra, Jihad (10)AlAbbad, Mohammed A. (8)KHALED, Fethi (8)View MoreDepartment
    Clean Combustion Research Center (36)
    Physical Sciences and Engineering (PSE) Division (34)Mechanical Engineering Program (31)Chemical and Biological Engineering Program (13)Chemical Kinetics & Laser Sensors Laboratory (7)View MoreJournalCombustion and Flame (21)Proceedings of the Combustion Institute (12)Fuel (2)Chemical Physics Letters (1)KAUST Acknowledged Support UnitClean Combustion Research Center (5)Clean Combustion Research Center (CCRC) (2)KAUST Baseline program (1)Publisher
    Elsevier BV (36)
    Subject
    Shock tube (36)
    Rapid compression machine (13)Ignition delay (6)Ignition delay times (6)Chemical kinetic modeling (5)View MoreTypeArticle (36)Year (Issue Date)2018 (7)2017 (7)2016 (9)2015 (7)2014 (2)View MoreItem AvailabilityMetadata Only (22)Open Access (9)Embargoed (5)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-10 of 36

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 36CSV
    • 36RefMan
    • 36EndNote
    • 36BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements

    Zhou, Chong-Wen; Li, Yang; Burke, Ultan; Banyon, Colin; Somers, Kieran P.; Ding, Shuiting; Khan, Saadat; Hargis, Joshua W.; Sikes, Travis; Mathieu, Olivier; Petersen, Eric L.; AlAbbad, Mohammed A.; Farooq, Aamir; Pan, Youshun; Zhang, Yingjia; Huang, Zuohua; Lopez, Joseph; Loparo, Zachary; Vasu, Subith S.; Curran, Henry J. (Combustion and Flame, Elsevier BV, 2018-09-10) [Article]
    Ignition delay times for 1,3-butadiene oxidation were measured in five different shock tubes and in a rapid compression machine (RCM) at thermodynamic conditions relevant to practical combustors. The ignition delay times were measured at equivalence ratios of 0.5, 1.0, and 2.0 in ‘air’ at pressures of 10, 20 and 40 atm in both the shock tubes and in the RCM. Additional measurements were made at equivalence ratios of 0.3, 0.5, 1.0 and 2.0 in argon, at pressures of 1, 2 and 4 atm in a number of different shock tubes. Laminar flame speeds were measured at unburnt temperatures of 295 K, 359 K and 399 K at atmospheric pressure in the equivalence ratio range of 0.6–1.7, and at a pressure of 5 atm at equivalence ratios in the range 0.6–1.4. These experimental data were then used as validation targets for a newly developed detailed chemical kinetic mechanism for 1,3-butadiene oxidation. \n \nA detailed chemical kinetic mechanism (AramcoMech 3.0) has been developed to describe the combustion of 1,3-butadiene and is validated by a comparison of simulation results to the new experimental measurements. Important reaction classes highlighted via sensitivity analyses at different temperatures include: (a) ȮH radical addition to the double bonds on 1,3-butadiene and their subsequent reactions. The branching ratio for addition to the terminal and central double bonds is important in determining the reactivity at low-temperatures. The alcohol-alkene radical adducts that are subsequently formed can either react with HȮ2 radicals in the case of the resonantly stabilized radicals or O2 for other radicals. (b) HȮ2 radical addition to the double bonds in 1,3-butadiene and their subsequent reactions. This reaction class is very important in determining the fuel reactivity at low and intermediate temperatures (600–900 K). Four possible addition reactions have been considered. (c) 3Ö atom addition to the double bonds in 1,3-butadiene is very important in determining fuel reactivity at intermediate to high temperatures (> 800 K). In this reaction class, the formation of two stable molecules, namely CH2O + allene, inhibits reactivity whereas the formation of two radicals, namely Ċ2H3 and ĊH2CHO, promotes reactivity. (d) Ḣ atom addition to the double bonds in 1,3-butadiene is very important in the prediction of laminar flame speeds. The formation of ethylene and a vinyl radical promotes reactivity and it is competitive with H-atom abstraction by Ḣ atoms from 1,3-butadiene to form the resonantly stabilized Ċ4H5-i radical and H2 which inhibits reactivity. Ab initio chemical kinetics calculations were carried out to determine the thermochemistry properties and rate constants for some of the important species and reactions involved in the model development. The present model is a decent first model that captures most of the high-temperature IDTs and flame speeds quite well, but there is room for considerable improvement especially for the lower temperature chemistry before a robust model is developed.
    Thumbnail

    Shock tube studies of ethanol preignition

    Figueroa Labastida, Miguel; Badra, Jihad; Elbaz, Ayman M.; Farooq, Aamir (Combustion and Flame, Elsevier BV, 2018-09-26) [Article]
    Understanding premature ignition or preignition is of great importance as this phenomenon influences the design and operation of internal combustion engines. Preignition leading to super-knock restricts the efficiency of downsized boosted engines. To gain a fundamental understanding of preignition and how it affects an otherwise homogeneous ignition process, a shock tube may be used to decipher the influence of fuel chemical structure, temperature, pressure, equivalence ratio and bath gas on preignition. In a previous work by Javed et al. (2017), ignition delay time measurements of n-heptane showed significantly expedited reactivity compared to well-validated chemical kinetic models in the intermediate-temperature regime. In the current work, ethanol is chosen as a representative fuel that, unlike n-heptane, does not exhibit negative temperature coefficient (NTC) behaviour. Reactive mixtures containing 2.9% and 5% of ethanol at equivalence ratios of 0.5 and 1 were used for the measurement of ignition delay times behind reflected shock waves at 2 and 4 bar. Effect of bath gas was studied with mixtures containing either Ar or N2. In addition to conventional side-wall pressure and OH* measurements, a high-speed imaging setup was utilized to visualize the shock tube cross-section through a transparent quartz end-wall. The results suggest that preignition events are more likely to happen in mixtures containing higher ethanol concentration and that preignition energy release is more pronounced at lower temperatures. High-speed imaging shows that low-temperature ignition process is usually initiated from an individual hot spot that grows gradually, while high-temperatures ignition starts from many spots simultaneously which consume the reactive mixture almost homogeneously.
    Thumbnail

    Autoignition studies of Liquefied Natural Gas (LNG) in a shock tube and a rapid compression machine

    Vallabhuni, Sonal K.; Lele, Aditya D.; Patel, Vaibhav; Lucassen, Arnas; Moshammer, Kai; AlAbbad, Mohammed A.; Farooq, Aamir; Fernandes, Ravi X. (Fuel, Elsevier BV, 2018-06-07) [Article]
    Liquefied Natural Gas (LNG) has become an increasingly important world energy resource and is a part of the European Union clean fuel strategy launched in 2013. Therefore, there are currently several ongoing measurement strategies considering quality specification of LNG. In this context, for application in gas engines, it is essential to understand the combustion behavior of these natural gas mixtures. The methane number (MN) which represents a scale for the knocking propensity, is one of the main indicators for this combustion behavior. In this study, we investigated the influence of the LNG composition on the ignition delay time and thus the knocking behavior of prototypical LNG Mixtures. Several LNG typical mixtures containing CH/CH/CH/n-CH/i-CH/n-CH/i-CH/N were studied in the temperature range 850–1450 K, with pressures of 20 and 40 bar and at equivalence ratios of 0.4 and 1.2. The use of a shock tube and a rapid compression machine facility allowed us to study the ignition behavior over a wide range of operating conditions relevant to gas engines. We report a detailed investigation of LNG autoignition with respect to temperature, pressure and equivalence ratio thereby providing crucial validation data for chemical kinetic models for real applications.
    Thumbnail

    An IH-QCL based gas sensor for simultaneous detection of methane and acetylene

    Zhang, Guangle; Khabibullin, Kuanysh; Farooq, Aamir (Proceedings of the Combustion Institute, Elsevier BV, 2018-06-27) [Article]
    Extended wavelength tuning of an IH-QCL (integrated heater quantum cascade laser) is exploited for simultaneous detection of methane and acetylene using direct absorption spectroscopy. The integrated heater, placed within few microns of the laser active region, enables wider wavelength tuning than would be possible with a conventional DFB (distributed feedback) QCL. In this work, the laser current and heater resistor current are modulated simultaneously at 25 kHz to tune the laser over 1279.6-1280.1 cm, covering absorption transitions of methane and acetylene. The laser is characterized extensively to understand the dependence of wavelength tuning on modulation frequency, modulation amplitude and phase difference between laser/heater modulation. Thereafter, the designed sensor is validated in both room-temperature static cell experiments and non-reactive high-temperature-measurements in methane-acetylene-argon gas mixtures in the shock tube. Finally, the sensor is applied for simultaneous detection of methane and acetylene during the high-temperature pyrolysis of iso-octane behind reflected shock waves.
    Thumbnail

    A shock tube kinetic study on the branching ratio of methanol + OH reaction

    Liu, Dapeng; Giri, Binod; Farooq, Aamir (Proceedings of the Combustion Institute, Elsevier BV, 2018-06-28) [Article]
    Methanol (CHOH) is the simplest alcohol and is considered to be a future fuel, produced by solar-driven reduction of carbon dioxide. The reaction of methanol and hydroxyl radicals is important in both combustion and atmospheric systems because this reaction is the dominant consumption pathway for methanol oxida- tion. Hydrogen abstraction at the CH or OH site of CH OH leads to different radical intermediates. The relative importance of these two channels is critical for combustion modeling as the subsequent chemistries of the product radicals (CHO and CHOH) are markedly different. In this work, we measured overall rate coefficients for the reaction of methanol (CHOH), methanol-d (CD OH) and methanol-d (CH DOH) with OH radicals over the temperature range of 900 -1300 K and pressures near 1.3 atm by employing shock tube/UV laser absorption technique. Combining our results with literature data, we recommend following three-parameter Arrhenius expressions (cm molecule s ): k1 (CH3OH + OH ) = 3.25 × 10 (T/300 K) exp(297.8K/T) 210 - 1344 K k2 (CDOH + OH ) = 4.69 × 10 (T/300 K) exp (-59.8K/T)293 - 1287 K Using our measured total rate coefficients, we determined site-specific H-abstraction rate coefficients and hence, branching ratios of the two abstraction channels. Our results show that abstraction at the CH site is the dominant channel, contributing more than 80% throughout our temperature range. Our calculated site-specific rate coefficients (per H atom) over 900-1300K are given by (cm molecule s ): k (CH2OH channel) = 2.55 × 10 exp (-2287.1 K/T ) k (CH3O channel) = 4.30 × 10 exp (-3463.2 K/T )
    Thumbnail

    Ignition delay measurements of a low-octane gasoline blend, designed for gasoline compression ignition (GCI) engines

    AlAbbad, Mohammed A.; Badra, Jihad; Djebbi, Khalil; Farooq, Aamir (Proceedings of the Combustion Institute, Elsevier BV, 2018-06-21) [Article]
    A blend of low-octane (light and heavy naphtha) and high-octane (reformate) distillate fuels has been proposed for powering gasoline compression ignition (GCI) engines. The formulated 'GCI blend' has a research octane number (RON) of 77 and a motor octane number (MON) of 73.9. In addition to ~64 mole% paraffinic components, the blend contains ~20 mole% aromatics and ~15 mole% naphthenes. Experimental and modeling studies have been conducted in this work to assess autoignition characteristics of the GCI blend. Ignition delay times were measured in a shock tube and a rapid comparison machine over wide ranges of experimental conditions (20 and 40 bar, 640-1175 K, ϕ = 0.5, 1 and 2). Reactivity of the GCI blend was compared with experimental measurements of two surrogates: a multi-component surrogate (MCS) and a two-component primary reference fuel (PRF 77). Both surrogates capture the reactivity of the fuel quite well at high and intermediate temperatures. The MCS does a better job of emulating the fuel reactivity at low temperatures, where PRF 77 is more reactive than the GCI blend. Ignition delay times of the two surrogates are also simulated using detailed chemical kinetic models, and the simulations agree well with the experimental findings. The results of rate-of-production analyses show important role of cycloalkane chemistry in the overall autoignition behavior of the fuel at low temperatures.
    Thumbnail

    Oxidation of 2-methylfuran and 2-methylfuran/ n -heptane blends: An experimental and modeling study

    Tripathi, Rupali; Burke, Ultan; Ramalingam, Ajoy K.; Lee, Changyoul; Davis, Alexander C.; Cai, Liming; Selim, Hatem; Fernandes, Ravi X.; Heufer, Alexander K.; Sarathy, Mani S.; Pitsch, Heinz (Combustion and Flame, Elsevier BV, 2018-06-23) [Article]
    There have been significant advances in understanding ignition behavior of oxygenated biofuels (mainly alcohols) and their blends with conventional fuel components. However, the oxidation behavior of lignocellulosic derived furanic compounds blended with hydrocarbons has received little attention. The present work is an experimental and numerical investigation of 2-methylfuran (2-MF) combustion and its blend with n-heptane. These results are compared with pure n-heptane results to better understand 2-MF reactivity. Ignition delay times of pure 2-MF and the 2-MF/n-heptane (50/50 2-MF/n-heptane molar %) blend in air were measured in three different facilities; a rapid compression machine and two different shock tubes. Experiments were performed in the temperature range of 861–913 K at a pressure of 20 bar for stoichiometric pure 2-MF. The ignition delay times of 2-MF/n-heptane blends were measured in the temperature range of 672–1207 K, at pressures of 10 and 20 bar, and at equivalence ratios of 0.5, 1.0, and 1.5. A comprehensive chemical kinetic model containing low- to high-temperature chemistry of 2-MF and n-heptane was formulated based on a combination of available 2-MF and n-heptane mechanisms and available theoretical studies on 2-MF form literature. The developed detailed kinetic model was validated against the ignition delay data measured in this work as well as against high-temperature shock tube ignition delay, flame speed, and flame species data from literature to ensure the competence of the model. The proposed mechanism predicts the measured and literature data to a reasonable extent. To elucidate fuel specific oxidation pathways, reaction path analyses were performed at various conditions. Furthermore, sensitivity analyses on the ignition delay times were conducted and the dominant reaction pathways in the oxidation of pure and binary mixtures at high, intermediate, and low temperatures were identified. It is found that the competition between n-heptane and 2-MF for ȮH radicals inhibits the consumption of n-heptane and promotes the consumption of 2-MF. This work provides the first insight into the global low-temperature oxidation behavior of a second generation furanic blended with a hydrocarbon.
    Thumbnail

    An experimental and theoretical kinetic study of the reaction of OH radicals with tetrahydrofuran

    Giri, Binod; KHALED, Fethi; Szőri, Milán; Viskolcz, Béla; Farooq, Aamir (Proceedings of the Combustion Institute, Elsevier BV, 2016-06-24) [Article]
    Tetrahydrofuran (CHO, THF) and its alkylated derivatives of the cyclic ether family are considered to be promising future biofuels. They appear as important intermediates during the low-temperature oxidation of conventional hydrocarbon fuels and of heavy biofuels such as long-chain fatty acid methyl esters. The reaction of tetrahydrofuran with OH radicals was investigated in a shock tube, over a temperature range of 800-1340 K and at pressures near 1.5 bar. Hydroxyl radicals were generated by the rapid thermal decomposition of tert-butyl hydroperoxide, and a UV laser absorption technique was used to monitor the mole fraction of OH radicals. High-level CCSD(T)/cc-pV(D,T)Z//MP2/aug-cc-pVDZ quantum chemical calculations were performed to explore the chemistry of the THF+OH reaction system. Our calculations reveal that the THF+OH (R1) reaction proceeds via either direct or indirect H-abstraction from various sites, leading to the formation of tetrahydrofuran-2-yl (THF-R2) or tetrahydrofuran-3-yl (THF-R3) radicals and water. Theoretical kinetic analysis revealed that both channels are important under conditions relevant to combustion. To our knowledge, this is the first direct experimental and theoretical kinetic study of the reaction of tetrahydrofuran with OH radicals at high temperatures. The following theoretical rate expressions (in units of cmmols) are recommended for combustion modeling in the temperature range 800-1350 K: . k1(T)=4.11×1040.16em0ex(TK)2.69exp(1316.80.16em0exKT)2.em0ex0.16em0ex(THF+OH→Products) . k2(T)=6.930.16em0ex×10110.16em0ex(TK)0.41exp(-106.80.16em0exKT)2.em0ex0.16em0ex(THF+OH→THF-R20.16em0ex+H2O) . k3(T)=4.120.16em0ex×1030.16em0ex(TK)3.02exp(456.90.16em0exKT)2.em0ex0.16em0ex(THF+OH→THF-R30.16em0ex+H2O) . .
    Thumbnail

    Ignition delay measurements of light naphtha: A fully blended low octane fuel

    Javed, Tamour; Nasir, Ehson Fawad; Ahmed, Ahfaz; Badra, Jihad; Djebbi, Khalil; Beshir, Mohamed; Ji, Weiqi; Sarathy, Mani; Farooq, Aamir (Proceedings of the Combustion Institute, Elsevier BV, 2016-06-15) [Article]
    Light naphtha is a fully blended, low-octane (RON. = 64.5, MON. = 63.5), highly paraffinic (>. 90% paraffinic content) fuel, and is one of the first distillates obtained during the crude oil refining process. Light naphtha is an attractive low-cost fuel candidate for advanced low-temperature compression ignition engines where autoignition is the primary control mechanism. We measured ignition delay times for light naphtha in a shock tube and a rapid compression machine (RCM) over a broad range of temperatures (640-1250. K), pressures (20 and 40. bar) and equivalence ratios (0.5, 1 and 2). Ignition delay times were modeled using a two-component primary reference fuel (PRF) surrogate and a multi-component surrogate. Both surrogates adequately captured the measured ignition delay times of light naphtha under shock tube conditions. However, for low-temperature RCM conditions, simulations with the multi-component surrogate showed better agreement with experimental data. These simulated surrogate trends were confirmed by measuring the ignition delay times of the PRF and multi-component surrogates in the RCM at . P = 20. bar, . ϕ = 2. Detailed kinetic analyses were undertaken to ascertain the dependence of the surrogates' reactivity on their chemical composition. To the best of our knowledge, this is the first fundamental autoignition study on the reactivity of a low-octane fully blended fuel and the use of a suitably formulated multi-component surrogate to model its behavior.
    Thumbnail

    A shock tube study of C4–C6 straight chain alkenes + OH reactions

    KHALED, Fethi; Badra, Jihad; Farooq, Aamir (Proceedings of the Combustion Institute, Elsevier BV, 2016-06-28) [Article]
    Alkenes are known to be good octane boosters and they are major components of commercial fuels. Detailed theoretical calculations and direct kinetic measurements of elementary reactions of alkenes with combustion radicals are scarce for C4 alkenes and they are practically absent for C5 and larger alkenes. The overall rate coefficients for the reaction of OH radical with 1-butene (CH CHCH CH, k ), 1-pentene (CH CHCH CH-CH, k ), cis/trans 2-pentene (CH CHCHCH CH, k and k ), 1-hexene (CH CHCH CH CH CH, k ) and cis/trans 2-hexene (CH CHCHCH CH CH, k and k ) were measured behind reflected shock waves over the temperature range of 833-1377K and pressures near 1.5atm. The reaction progress was followed by measuring mole fraction of OH radicals near 306.7nm using UV laser absorption technique. It is found that the rate coefficients of OH+trans-2-alkenes are larger than those of OH+cis-2-alkenes, followed by OH+1-alkenes. The derived Arrhenius expressions for the overall rate coefficients (in cm.mol.s) are:. kI=(4.83±0.03)104.T2.72±0.01.exp(940.8±2.9cal/molRT)(946K-1256K) + kII=(5.66±0.54)10-1.T4.14±0.80.exp(4334±227cal/molRT)(875K-1379K) + kIII=(3.25±0.12)104.T2.76±0.5.exp(1962±83cal/molRT)(877K-1336K) + kIV=(3.42±0.09)104.T2.76±0.5.exp(1995±59cal/molRT)(833K-1265K) + kV=(7.65±0.58)10-4.T5±1.exp(5840±175cal/molRT)(836K-1387K) + kVI=(2.58±0.06)106.T2.17±0.37.exp(1461±55cal/molRT)(891K-1357K) + kVII=(3.08±0.05)106.T2.18±0.37.exp(1317±38cal/molRT)(881K-1377K) +
    • 1
    • 2
    • 3
    • 4
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.