• Login
    Search 
    •   Home
    • Research
    • Articles
    • Search
    •   Home
    • Research
    • Articles
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorHarrou, Fouzi (1)Madakyaru, Muddu (1)Sun, Ying (1)DepartmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (1)Statistics Program (1)Journal
    Energy and Buildings (1)
    KAUST Grant Number
    OSR-2015-CRG4-2582 (1)
    Publisher
    Elsevier BV (1)
    SubjectAnomaly detection (1)Hellinger distance (1)Multiscale filtering (1)Nonlinear PLS (1)Nonlinear processes (1)View MoreTypeArticle (1)Year (Issue Date)2017 (1)Item AvailabilityOpen Access (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Improved nonlinear fault detection strategy based on the Hellinger distance metric: Plug flow reactor monitoring

    Harrou, Fouzi; Madakyaru, Muddu; Sun, Ying (Energy and Buildings, Elsevier BV, 2017-03-18) [Article]
    Fault detection has a vital role in the process industry to enhance productivity, efficiency, and safety, and to avoid expensive maintenance. This paper proposes an innovative multivariate fault detection method that can be used for monitoring nonlinear processes. The proposed method merges advantages of nonlinear projection to latent structures (NLPLS) modeling and those of Hellinger distance (HD) metric to identify abnormal changes in highly correlated multivariate data. Specifically, the HD is used to quantify the dissimilarity between current NLPLS-based residual and reference probability distributions obtained using fault-free data. Furthermore, to enhance further the robustness of these methods to measurement noise, and reduce the false alarms due to modeling errors, wavelet-based multiscale filtering of residuals is used before the application of the HD-based monitoring scheme. The performances of the developed NLPLS-HD fault detection technique is illustrated using simulated plug flow reactor data. The results show that the proposed method provides favorable performance for detection of faults compared to the conventional NLPLS method.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.