• Login
    Search 
    •   Home
    • Research
    • Articles
    • Search
    •   Home
    • Research
    • Articles
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorAlshareef, Husam N. (1)
    He, Xin (1)
    Hedhili, Mohamed N. (1)Jiang, Qiu (1)Tu, Shao Bo (1)View MoreDepartmentMaterials Science and Engineering (1)Materials Science and Engineering Program (1)Physical Sciences and Engineering (PSE) Division (1)Surface Science (1)JournalACS Applied Materials & Interfaces (1)KAUST Acknowledged Support Unit
    Advanced Nanofabrication, Imaging, and Characterization Laboratory (1)
    PublisherAmerican Chemical Society (ACS) (1)Subjectdielectric permittivity (1)microscopic dipole (1)MXene flakes (1)size engineering (1)surface terminations (1)View MoreTypeArticle (1)Year (Issue Date)2019 (1)Item AvailabilityEmbargoed (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Enhancement of Dielectric Permittivity of Ti3C2Tx MXene/Polymer Composites by Controlling Flake Size and Surface Termination

    Tu, Shao Bo; Jiang, Qiu; Zhang, Junwei; He, Xin; Hedhili, Mohamed N.; Zhang, Xixiang; Alshareef, Husam N. (ACS Applied Materials & Interfaces, American Chemical Society (ACS), 2019-07-15) [Article]
    We report a strong effect of the MXene flake size and surface termination on the dielectric permittivity of MXene polymer composites. Specifically, poly(vinylidene fluoride-trifluoro-ethylene-chlorofluoroehylene) or P(VDF-TrFE-CFE) polymer embedded with large (ca. 4.5 μm) Ti3C2Tx flakes achieves a dielectric permittivity as high as 105 near the percolation limit of 15.3 wt % MXene loading. In comparison, the dielectric permittivity of MXene/P(VDF-TrFE-CFE) using small (ca. 1.5 μm) Ti3C2Tx flakes (S-MXene) achieves a dielectric permittivity of 104 near the percolation limit of 16.8 wt %. Meanwhile, increasing the concentration of surface functional groups on the MXene surface (−O, −F, and −OH) by extending the etching time gives a dielectric constant of 2204 near the percolation limit of 15.7 wt %. The ratio of permittivity to the loss factor of our large flake composite is superior to that of the small flake composite, and to all previously reported carbon-based fillers in P(VDF-TrFE-CFE). We show that the dielectric permittivity enhancement is strongly related to the charge accumulation at the surfaces between the two dimensional (2D) MXene flakes and the polymer matrix under an external applied electric field.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.