• Login
    Search 
    •   Home
    • Research
    • Articles
    • Search
    •   Home
    • Research
    • Articles
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorAnthopoulos, Thomas D. (1)Cao, Zhen (1)
    Cavallo, Luigi (1)
    Hedhili, Mohamed N. (1)
    Kumar, Pushpendra (1)
    View MoreDepartmentChemical Science Program (1)Core Labs (1)KAUST Catalysis Center (KCC) (1)KAUST Solar Center (KSC) (1)
    Materials Science and Engineering Program (1)
    View MoreJournalAdvanced Functional Materials (1)PublisherWiley (1)Subjectflexible freestanding electrodes (1)lithium–sulfur batteries (1)
    phase inversion (1)
    polyethersulfone (1)
    polysulfide-modified electrolytes (1)View MoreTypeArticle (1)Year (Issue Date)
    2018 (1)
    Item AvailabilityMetadata Only (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Phase Inversion Strategy to Flexible Freestanding Electrode: Critical Coupling of Binders and Electrolytes for High Performance Li-S Battery

    Wahyudi, Wandi; Cao, Zhen; Kumar, Pushpendra; Li, Mengliu; Wu, Yingqiang; Hedhili, Mohamed N.; Anthopoulos, Thomas D.; Cavallo, Luigi; Li, Lain-Jong; Ming, Jun (Advanced Functional Materials, Wiley, 2018-06-25) [Article]
    Development of flexible and freestanding electrode is attracting great attention in lithium–sulfur (Li–S) batteries, but the severe capacity fading caused by the lithium polysulfides (PSs) shuttle effect remains challenging. Herein, a completely new polymeric binder of polyethersulfone is introduced. Not only it enables massive production of flexible/current-free electrode by a novel concept of “phase-inversion” approach but also the resultant polymeric networks can effectively trap the soluble polysulfides within the electrode, owing to the higher hydrophilicity and stronger affinity properties than the routine polyvinylidene fluoride. Coupling with polysulfide-based electrolyte, the Li–S cell shows a higher capacity of 1141 mAh g, a lower polarization of 192 mV, and a more stable capacity retention with 100% Coulombic efficiency over 100 cycles at 0.25C. The advantages of favored binder and electrolyte are further demonstrated in lithium-ion sulfur full battery with lithiated graphite anode, which demonstrates much improved performance than those previously reported. This work not only introduces a novel strategy for flexible freestanding electrodes but also enlightens the importance of coupling electrodes and electrolytes to higher performances for Li–S battery.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.