• Login
    Search 
    •   Home
    • Research
    • Articles
    • Search
    •   Home
    • Research
    • Articles
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    Author
    Gkoutos, Georgios V (2)
    Hoehndorf, Robert (2)Kulmanov, Maxat (2)Schofield, Paul N (2)Boudellioua, Imene (1)DepartmentComputational Bioscience Research Center (CBRC) (2)Computer Science Program (2)Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division (2)JournalBioinformatics (1)BMC Bioinformatics (1)KAUST Grant NumberFCC/1/1976-08-01 (2)
    URF/1/3454-01-01 (2)
    FCS/1/3657-02-01 (1)PublisherCold Spring Harbor Laboratory (2)SubjectMachine learning (1)Ontology (1)Phenotype (1)Variant prioritization (1)View MoreTypeArticle (2)Year (Issue Date)2019 (1)2018 (1)Item AvailabilityOpen Access (2)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-2 of 2

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 2CSV
    • 2RefMan
    • 2EndNote
    • 2BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    DeepPVP: phenotype-based prioritization of causative variants using deep learning

    Boudellioua, Imene; Kulmanov, Maxat; Schofield, Paul N; Gkoutos, Georgios V; Hoehndorf, Robert (BMC Bioinformatics, Cold Spring Harbor Laboratory, 2019-02-06) [Article]
    Prioritization of variants in personal genomic data is a major challenge. Recently, computational methods that rely on comparing phenotype similarity have shown to be useful to identify causative variants. In these methods, pathogenicity prediction is combined with a semantic similarity measure to prioritize not only variants that are likely to be dysfunctional but those that are likely involved in the pathogenesis of a patient's phenotype. We have developed DeepPVP, a variant prioritization method that combined automated inference with deep neural networks to identify the likely causative variants in whole exome or whole genome sequence data. We demonstrate that DeepPVP performs significantly better than existing methods, including phenotype-based methods that use similar features. DeepPVP is freely available at https://github.com/bio-ontology-research-group/phenomenet-vp . DeepPVP further improves on existing variant prioritization methods both in terms of speed as well as accuracy.
    Thumbnail

    Ontology-based validation and identification of regulatory phenotypes

    Kulmanov, Maxat; Schofield, Paul N; Gkoutos, Georgios V; Hoehndorf, Robert (Bioinformatics, Cold Spring Harbor Laboratory, 2018-09-08) [Article]
    Motivation Function annotations of gene products, and phenotype annotations of genotypes, provide valuable information about molecular mechanisms that can be utilized by computational methods to identify functional and phenotypic relatedness, improve our understanding of disease and pathobiology, and lead to discovery of drug targets. Identifying functions and phenotypes commonly requires experiments which are time-consuming and expensive to carry out; creating the annotations additionally requires a curator to make an assertion based on reported evidence. Support to validate the mutual consistency of functional and phenotype annotations as well as a computational method to predict phenotypes from function annotations, would greatly improve the utility of function annotations. Results We developed a novel ontology-based method to validate the mutual consistency of function and phenotype annotations. We apply our method to mouse and human annotations, and identify several inconsistencies that can be resolved to improve overall annotation quality. We also apply our method to the rule-based prediction of regulatory phenotypes from functions and demonstrate that we can predict these phenotypes with F of up to 0.647. Availability and implementation https://github.com/bio-ontology-research-group/phenogocon.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.