• Login
    Search 
    •   Home
    • Research
    • Articles
    • Search
    •   Home
    • Research
    • Articles
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorHoteit, Ibrahim (3)Gittings, John A (2)Raitsos, Dionysios E (2)Afzal, Shehzad (1)Al-otaibi, Najwa Aziz (1)View MoreDepartmentEarth Science and Engineering Program (3)Physical Sciences and Engineering (PSE) Division (3)Marine Science Program (2)Applied Mathematics and Computational Science Program (1)Biological and Environmental Sciences and Engineering (BESE) Division (1)View MoreJournalComputer Graphics Forum (1)Frontiers in microbiology (1)Scientific reports (1)KAUST Acknowledged Support Unit
    Office of Sponsored Research (OSR) (3)
    Shaheen II (1)Supercomputing Laboratory (1)Visualization Core Lab (1)KAUST Grant Number
    REP/1/3268-01-01 (3)
    PublisherBlackwell Publishing Ltd (1)Frontiers Media SA (1)Springer Science and Business Media LLC (1)SubjectCCS Concepts (1)chlorophyll (1)phytoplankton (1)Red Sea (1)size (1)View MoreTypeArticle (3)Year (Issue Date)2019 (3)Item AvailabilityOpen Access (2)Embargoed (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-3 of 3

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 3CSV
    • 3RefMan
    • 3EndNote
    • 3BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    The state of the art in visual analysis approaches for ocean and atmospheric datasets

    Afzal, Shehzad; Hittawe, M. M.; Ghani, Sohaib; Jamil, Tahira; Knio, Omar; Hadwiger, Markus; Hoteit, Ibrahim (Computer Graphics Forum, Blackwell Publishing Ltd, 2019-07-10) [Article]
    The analysis of ocean and atmospheric datasets offers a unique set of challenges to scientists working in different application areas. These challenges include dealing with extremely large volumes of multidimensional data, supporting interactive visual analysis, ensembles exploration and visualization, exploring model sensitivities to inputs, mesoscale ocean features analysis, predictive analytics, heterogeneity and complexity of observational data, representing uncertainty, and many more. Researchers across disciplines collaborate to address such challenges, which led to significant research and development advances in ocean and atmospheric sciences, and also in several relevant areas such as visualization and visual analytics, big data analytics, machine learning and statistics. In this report, we perform an extensive survey of research advances in the visual analysis of ocean and atmospheric datasets. First, we survey the task requirements by conducting interviews with researchers, domain experts, and end users working with these datasets on a spectrum of analytics problems in the domain of ocean and atmospheric sciences. We then discuss existing models and frameworks related to data analysis, sense-making, and knowledge discovery for visual analytics applications. We categorize the techniques, systems, and tools presented in the literature based on the taxonomies of task requirements, interaction methods, visualization techniques, machine learning and statistical methods, evaluation methods, data types, data dimensions and size, spatial scale and application areas. We then evaluate the task requirements identified based on our interviews with domain experts in the context of categorized research based on our taxonomies, and existing models and frameworks of visual analytics to determine the extent to which they fulfill these task requirements, and identify the gaps in current research. In the last part of this report, we summarize the trends, challenges, and opportunities for future research in this area. (see http://www.acm.org/about/class/class/2012).
    Thumbnail

    Factors Regulating the Relationship Between Total and Size-Fractionated Chlorophyll-a in Coastal Waters of the Red Sea.

    Brewin, Robert J W; Moran, Xose Anxelu G.; Raitsos, Dionysios E; Gittings, John A; Calleja Cortes, Maria de Lluch; Viegas, Miguel; Ansari, Mohd Ikram; Al-otaibi, Najwa Aziz; Huete-Stauffer, Tamara M; Hoteit, Ibrahim (Frontiers in microbiology, Frontiers Media SA, 2019-09-09) [Article]
    Phytoplankton biomass and size structure are recognized as key ecological indicators. With the aim to quantify the relationship between these two ecological indicators in tropical waters and understand controlling factors, we analyzed the total chlorophyll-a concentration, a measure of phytoplankton biomass, and its partitioning into three size classes of phytoplankton, using a series of observations collected at coastal sites in the central Red Sea. Over a period of 4 years, measurements of flow cytometry, size-fractionated chlorophyll-a concentration, and physical-chemical variables were collected near Thuwal in Saudi Arabia. We fitted a three-component model to the size-fractionated chlorophyll-a data to quantify the relationship between total chlorophyll and that in three size classes of phytoplankton [pico- (<2 μm), nano- (2-20 μm) and micro-phytoplankton (>20 μm)]. The model has an advantage over other more empirical methods in that its parameters are interpretable, expressed as the maximum chlorophyll-a concentration of small phytoplankton (pico- and combined pico-nanophytoplankton, Cpm and Cp,nm , respectively) and the fractional contribution of these two size classes to total chlorophyll-a as it tends to zero (D p and D p,n ). Residuals between the model and the data (model minus data) were compared with a range of other environmental variables available in the dataset. Residuals in pico- and combined pico-nanophytoplankton fractions of total chlorophyll-a were significantly correlated with water temperature (positively) and picoeukaryote cell number (negatively). We conducted a running fit of the model with increasing temperature and found a negative relationship between temperature and parameters Cpm and Cp,nm and a positive relationship between temperature and parameters D p and D p,n . By harnessing the relative red fluorescence of the flow cytometric data, we show that picoeukaryotes, which are higher in cell number in winter (cold) than summer (warm), contain higher chlorophyll per cell than other picophytoplankton and are slightly larger in size, possibly explaining the temperature shift in model parameters, though further evidence is needed to substantiate this finding. Our results emphasize the importance of knowing the water temperature and taxonomic composition of phytoplankton within each size class when understanding their relative contribution to total chlorophyll. Furthermore, our results have implications for the development of algorithms for inferring size-fractionated chlorophyll from satellite data, and for how the partitioning of total chlorophyll into the three size classes may change in a future ocean.
    Thumbnail

    Physical connectivity simulations reveal dynamic linkages between coral reefs in the southern Red Sea and the Indian Ocean.

    Wang, Yixin; Raitsos, Dionysios E; Krokos, Georgios; Gittings, John A; Zhan, Peng; Hoteit, Ibrahim (Scientific reports, Springer Science and Business Media LLC, 2019-11-14) [Article]
    The southern Red Sea is genetically distinct from the rest of the basin; yet the reasons responsible for this genetic separation remain unclear. Connectivity is a vital process for the exchange of individuals and genes among geographically separated populations, and is necessary for maintaining biodiversity and resilience in coral reef ecosystems. Here, using long-term, high-resolution, 3-D backward particle tracking simulations, we investigate the physical connectivity of coral reefs in the southern Red Sea with neighbouring regions. Overall, the simulation results reveal that the southern Red Sea coral reefs are more physically connected with regions in the Indian Ocean (e.g., the Gulf of Aden) than with the northern part of the basin. The identified connectivity exhibits a distinct monsoon-related seasonality. Though beyond the country boundaries, relatively remote regions of the Indian Ocean may have a substantial impact on the southern Red Sea coral reef regions, and this should be taken into consideration when establishing conservation strategies for these vulnerable biodiversity hot-spots.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.